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Materials and methods
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Scheme S1. Syntheses of azobenzene derivatives 1a, 1a’, 1b, 1¢, 1d.

Synthesis of 1a-1d, HADCAz and intermediates

Synthesis of 1a

0
cl —~

§:> N'N@NH °\
cl

To an ice cold solution of 450 mg (2.4 mmol) of compound 2e (see the following) in 10
mL EtOH, we added 2 mL of 2 M HCI and stirred the solution on ice for 30 min. To this
mixture we added a solution of 165 mg (2.4 mmol) of NaNO, in water drop wise with
vigorous stirring for 1 h to form the diazo salt. Then we added the diazo salt solution drop
wise to an ice cold solution of 537 mg (3 mmol) of N-phenyl-ethylglycine in 50 mL of
EtOH/2 M aqueous glycine (0.2 M, pH 5) = 1/1. After stirring for 15 min at this
temperature, the solution was warmed up to r.t. and stirred for an additional 2 h. Then we
evaporated the solvents on a rotary evaporator and dissolved the solids in a 100 mL
mixture of DCM/2 M HCI = 1/1. The organic phase was separated and the aqueous phase
was extracted twice with 50 mL of DCM. The organic phases were combined and the
solvent was removed on a rotary evaporator. The resulting solid was purified on silica by
column chromatography (eluted in hexane/EtOAc = 85/15) to yield the azobenzene 1c as
orange crystals (620 mg, 32.5%). "H-NMR (399.8 MHz, CDCls) & 7.91 (d, J = 8.4 Hz, 2
H), 7.86 (s, 2 H), 7.47 (s, 1 H), 6.71 (d, J = 8.4 Hz, 2 H), 4.67 (s,4 H), 429 (q, J = 7.2
Hz, 2 H), 4.02 (s, 2 H), 1.33 (t, J= 7.2 Hz, 3 H) ppm. “C-NMR (100.5 MHz, CDCl;) 3
170.1, 152.7, 150.6, 144.6, 139.0, 129.4, 126.2, 122.2, 112.8, 61.7, 45.26, 45.2, 14.2
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ppm. HRMS-ESI (m/z): (M+H)" cale. for Ci;sH;oCIN30,: 380.0927, observed:
380.0918; 2.23 ppm.

Synthesis of [(4-{(E)-[3,5-bis(hydroxymethyl)phenyl]diazenyl}phenyl)amino]acetic acid
(1a%)

o

HO X
,IN4©7NH OH
N

HO

To an ice cold solution of 462 mg (3 mmol) of compound 2b (see the following) in 4 mL
methanol, we added, 2 mL of 2 M HCI and the solution was stirred on ice for 30 min. To
this mixture we added a solution of 104.3 mg (3 mmol) of NaNO, in water drop wise
with vigorous stirring for 1 h to form the diazo salt. Then we added the diazo salt solution
drop wise to an ice cold solution of 453 mg (3 mmol) of phenyl glycine in 50 mL of
THF/NaHCO3 = 5/1. After stirring for 1 h at this temperature, the solution was warmed
up to r.t. and further stirred overnight. Then we evaporated the solvents and dissolved the
solids in a 100 mL mixture of DCM/brine = 1/1. The organic phase was separated and the
aqueous phase was extracted twice with 50 mL of DCM. The organic phase was
combined and the solvent was removed by rotary evaporator. The resulting solid was
purified on silica by column chromatography to yield the azobenzene 1c as orange
crystals (8.8%). "H-NMR (399.8 MHz, DMSO0) § 7.70 (d, J = 8.8 Hz, 2 H), 7.57 (s, 2H),
7.29 (s, 1 H), 6.64 (d, J=8.8 Hz, 2 H), 4.52 (s, 4 H), 3.92 (s, 2 H) ppm. *C-NMR (125.7
MHz, DMSO) 6171.8, 152.0, 151.7, 143.5, 143.1, 125.5, 125.0, 118.0, 112.0, 62.6, 44.3
ppm. HRMS-ESI (m/z): (M+H) calc. forC¢H sN304: 316.1292, observed: 316.1295; -
0.88 ppm.

Synthesis of N-{4-[(E)-{4-[bis(2-hydroxyethyl)amino]phenyl}diazenyl]phenyl}

acetamide (1b)
H
Y
HO\/\NON\N )
’

OH
To an ice cold solution of 4-aminoacetanilide (182 mg, 1.2 mmol) in 4 mL of 1 M HCI
IM, we added 1.2 mL of a 1 M solution of NaNO, drop wise. After stirring the reaction
mixture on ice for 1 h, we slowly added the mixture to an ice cold solution of N-
phenyldiethanolamin (253 mg 1.4 mmol) in EtOH/H,O = 1/1 with vigorous stirring. We
stirred the solution for 3 h, then removed the solvent on a rotary evaporator and purified
the products over silica by column chromatography. The product was eluted by
DCM/MeOH = 4/1 to yield the compound 1b as an orange solid (288 mg, 60%). 'H-
NMR (399.8 MHz, CDCl;) 6 10.2 (s, 1 H), 7.72 — 7.68 (m, 6 H), 6.80 (d, J = 8.8 Hz, 2
H), 3.76 (t, J= 5.6 Hz, 4 H), 4.82 (t, J = 5.2, 2 H), 3.60 — 3.51 (m, 4 H), 2.10 (s, 3 H)
ppm. PC-NMR (100.5 MHz, DMSO) § 169.0, 151.0, 148.4, 142.8, 141.1, 125.0, 123.0,
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119.6, 111.7, 58.6, 53.7, 24.6 ppm. HRMS-ESI (m/z): (M+H)" calc. for Ci1sH»N40s:
343.1765, observed: 343.1763; 0.47 ppm.

Synthesis of N-(4-{(E)-[3,5-bis(chloromethyl)phenyl]diazenyl} phenyl)acetamide (1c)

g

Cl

To 100 mg of a solution of compound 2h in dichloromethane, we added 0.2 mL of acetic
anhydride and stirred the solution for 1 h at r.t. The excess acetic anhydride was then
removed by rotary evaporator and the compound 1¢ was obtained as an orange solid (100
mg, 100%). "H-NMR (400.0 MHz, CDOD3/CDCl;:3/1) 7.88 (d, J = 8.8 Hz, 2 H), 7.79
(s, 2 H), 7.74 (d, ] = 8.8 Hz, 2 H), 7.48 (s, 1 H), 4.71 (s, 4 H), 2.17 (s, 3 H) ppm. "C-
NMR (100.6 MHz, CDOD3/CDCl;: 3/1) & 171.7, 154.2, 149.9, 144.1, 142.7, 128.4,
124.6, 1209, 120.8, 64.7, 24.0 ppm. HRMS-ESI (m/z): (M+H)" calc. for:
Ci16H17CN4O,: 367.0723, observed: 367.0723; -0.22 ppm.

Synthesis of 1dA

OH
CI/\@/ N

cl
To an ice cold solution of 2e (190 mg, 1 mmol) in THF, we added 2 mL of 2 M HCI.
Then we added 1 mL of a 1 M solution of NaNO; in water dropwise. After stirring on ice
for 1 h we slowly added this mixture to an ice cold solution of phenol (113 mg, 1 mmol)
in saturated NaHCOs3. The reaction mixture was stirred at this temperature for 30 min and
then was warmed up to r.t., then stirred at r.t. for another 2 h. The solvent was removed
on a rotary evaporator and the resulting mixture was purified over silica by column
chromatography (eluted in DCM/MeOH = 9/1) to yield 1dA as orange crystals (94 mg,
32%). "H-NMR (399.8 MHz, CDCl3) § 7.90 (dd, J = 8.8 Hz, J=2 Hz, 2 H), 7.87 (d, J =
0.8 Hz, 2 H), 7.52 (d, J= 0.8 Hz, 1 H), 6.96 (dd, J= 8.8 Hz, J =2 Hz, 2 H), 4.69 (s, 4 H)
ppm. *C-NMR (399.8 MHz, CDCl3) § 158.6, 153.1, 147.0, 139.1, 130.1, 125.2, 122.6,
116.0, 45.4 ppm. HRMS-ESI (m/z): (M+H)" calc. for C14H;3N,CLO: 295.0399,
observed: 295.0399; 0.46 ppm.
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Synthesis of 1d

“gj Y

ol
To a solution of 1dA (60 mg, 0.2 mmol) in dichloromethane, we added acetyl chloride
(212 pL, 0.3 mmol) followed 100 puL of pyridine. The reaction was then warmed to r.t.
and stirred for 1 h at this temperature. After the completion of the reaction, the solvent
was evaporated on a rotary evaporator and the resulting solid was purified on silica by
column chromatography. The product eluted in DCM/MeOH = 9/1 and solvent was
removed on a rotary evaporator to yield 1d (62 mg, 91%) as orange crystals. 'H-NMR
(499.8 MHz, CDCl3) 6 7.98 (d, ] = 8.8, 2 H), 7.92 (s, 2 H), 7.57 (s, 1 H), 7.29, (d, J = 8.8.
Hz, 2 H), 4.70 (s, 4 H), 2.37 (s, 3H) ppm. “C-NMR (125.7 MHz, CDCl3) § 169.0, 153.0,
153.0, 150.0, 139.2, 130.8, 124.3, 122.9, 122.3,45.4, 21.2 ppm. HRMS-ESI (m/z):
(M+H)" calc. for: C1sH;5C1N20,: 337.0505, observed: 337.0502,-0.75 ppm.

Synthesis of 3,5-bis(hydroxymethyl) aniline (2b)
HO

HoN
OH

We synthesized 3,5-bis(hydroxymethyl) aniline through a previously published method.'
To an ice cold solution of diethyl-5-(amino)isophtalate (2a) (5.23 g, 25 mmol, TCI
Chemicals) in THF (300 mL) we slowly added an ice cold suspension of LiAlH4(2.77 g,
75 mmol) in THF (200 mL) with vigorous stirring. After stirring for 30 min at this
temperature, the solution was warmed up to room temperature and was stirred for an
additional 2 h. Upon the completion of the reaction, the excess LiAlH4 was quenched by
slowly adding 60 mL ethyl acetate and stirring for 1 h, followed by 20 mL of methanol.
Then we added 50 mL of a solution of saturated NH4Cl to hydrolyze the aluminum salt.
The resulting mixture was filtered off and the filtrate was concentrated using a rotary
evaporator. The resulting solids were further purified by silica gel column
chromatography to give compound 2b (69% yield). '"H-NMR (400.0 MHz, CDODs): 3
6.67 (s, 1H) 6.61 (s, 2H), 4.46 (s, 4 H) ppm. C-NMR (100.6 MHz, CDOD3): & 147.3,
142.3, 1152, 113.0, 63.5 ppm. HRMS-ESI (m/z): calc. for CgH;,NO, (M+H)":
154.0868; found: 154.0861; 0.89 ppm.

Synthesis of 3,5-bis(hydroxymethyl) aniline-fer#-butyl carbamate (2¢)
HO

Boc
SN

H
H
To a solution of 3,5-bis(hydroxymethyl) aniline (compound 2b) (7 g, 45.5 mmol) in 200

mL DMF, we added di-tert-butyl dicarbonate (10.9 g, 50 mmol) with vigorous stirring.
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After stirring for 2 h, the solvent was evaporated and the crude solid was purified over
silica by column chromatography to give the white solid compound 2¢ (94%). '"H-NMR
(399.7 MHz, CDOD;): § 7.31 (s, 2 H), 6.99 (s, 1 H), 4.54 (s, 4 H), 1.50 (s, 9 H). "C-
NMR (100.5 MHz, CDOD3): ¢ 153.9, 142.1, 139.2, 119.3, 115.9, 79.4, 63.7, 27.3
HRMS-ESI (m/2): calc. for C13H1oNO4 (M+H):271.1652; found: 241.1649; 0.33 ppm.

Synthesis of 3,5-bis(chloromethyl) aniline-tert-butyl carbamate (2d)
cl

Boc\N
|

To an ice cold suspension of compound 2¢ (7 g, 27.6 mmol) in 200 mL THF, we slowly
added methanesulfonyl chloride (5.3 mL, 69 mmol), followed by triethylamine (7.6 mL,
55 mmol). The mixture was stirred at 0 °C for 30 min followed by stirring at room
temperature for an hour. To the resulting solution, we slowly added a solution of LiCl
(2.8 g, 69 mmol) in 100 mL DMF and the reaction mixture was stirred for 2 h at r.t. After
completion of the reaction, the solvent was evaporated and the resulting mixture was
dissolved in 200 mL of a 1:1 mixture of dichloromethane (DCM) and 0.1 M aqueous
solution of NaHCOs in water. The organic phase was separated and the aqueous phase
was extracted twice by 100 mL of DCM. The organic phases were combined and the
solvent was evaporated. The resulting crude mixture was purified over silica by column
chromatography to yield 2d as a fluffy powder (7.6 g, 82%). '"H-NMR (399.7 MHz,
CDCl): 6 7.39 (d, J=1.2 Hz, 2 H), 7.39 (d, J=1.2 Hz, 1 H), 6.65 (broad, 1 H), 4.53 (s, 4
H), 1.53 (s, 9 H). C-NMR (100.5 MHz, CD;0D): & 152.6, 139.2, 138.9, 123.0, 118.35,
81.1 ,45.7 , 283 HRMS-ESI (m/z): ESI (m/z): calc. for C;3H;7CI,NO, Na
(M+Na)+:312.0529; found: 312.0527; 0.65 ppm

Synthesis of 3,5-bis(chloromethyl) aniline (2e)
Cl

HoN
Cl
To 1.17 g of compound 2d we added 6 mL of trifluoroacetic acid (TFA) at room

temperature, with vigorous stirring. After 30 min, the TFA was evaporated and the
resulting solid was used with no further purification (0.71 g, quantitative). 'H-NMR
(399.8 MHz, CDCl3): 8 6.79 (s, 1 H), 6.69 (s, 1H), 4.50 (s, 4H) 3.69 (br, 2H) "C-NMR
(100.5 MHz, CDCls): § 147.2, 139.1, 118.7, 115.0, 46.0 ppm. HRMS-ESI (m/z): (M+H)"
calc. for CsH;oCpN: 190.0184, observed: 190.0184; 0.3ppm
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Synthesis of 4-methoxy-N-phenyl-benzylamine (2f)
o

To a solution of 5.1 mL (55 mmol) of aniline in 100 mL methanol, we added 6.1 mL (55
mmol) of 4-methoxy benzaldehyde with vigorous stirring. After refluxing overnight, the
reaction was cooled down to 0 °C and NaBH4 (1.9 g, 500 mmol) was added in small
portions along with vigorous stirring. We stirred the reaction for 30 min on ice and an
additional 1 h at room temperature. We evaporated the solvent by rotary evaporator and
re-dissolved the solid in DCM/0.1 M HCI = 1:1. The organic phase was washed three
times with HCI solution, pH 3. The combined organic phases were evaporated on rotary
evaporator. Crude product was purified by column chromatography over silica. The
product eluted in hexane/EtOAc = 85.15 to yield compound 2f as a white solid (10.4 g,
88%). "H-NMR (399.8 MHz, CDCl;): & 7.34 (dd, J=6.4 Hz, J=2 Hz, 2 H), 7.23 (dd, J =
8.4 Hz, J= 7.6 Hz, 2 H) 6.93 (dd, J/=6.4 Hz, J=2 Hz, 2 H), 6.77 (dd, /J=8.4 Hz,J =2
Hz, 1 H), 6.68 (dd, J=7.6 Hz, J=2 Hz, 2 H) 4.30 (s, 2 H), 3.99 (br, 1 H), 3.85 (s, 3H)
BC-NMR (100.5 MHz, CDCls): § 158.9, 148.3, 138.5, 129.3, 128.9, 117.5, 114.0, 112.9,
55.3, 47.8. HRMS-ESI (m/z): (M+H)" calc. for C;4H;sNO: 214.1226, observed:
214.1223; 1.67 ppm.

Synthesis of 2g
/

To an ice cold solution of 760 mg (4 mmol) of compound 2e in 4 mL methanol, we
added, 4 mL of 2 M HCI and the solution was stirred on ice for 30 min. To this mixture
we added a solution of 276 mg of NaNO; (4 mmol) in water drop wise with vigorous
stirring for 1 h to form the diazo salt. Then we added the diazo salt solution drop wise to
an ice cold solution of 2f in 50 mL of THF and the pH was adjusted to 5 with a saturated
solution of NaHCOj;. After stirring for 1 h at this temperature, the solution was warmed
up to r.t. and further stirred overnight. Then we evaporated the solvents on a rotary
evaporator and dissolved the solids in a 100 mL mixture of DCM/brine = 1/1. The
organic phase was separated and the aqueous layer was extracted twice with 50 mL of
DCM. The organic layers were combined and dried on a rotary evaporator. The resulting
solid was purified on silica by column chromatography; the product was eluted in
hexane/EtOAc = 3/1 to yield the 2g as orange crystals (1.03 g, 62%). "H NMR (399.9
MHz, CDCl3) 8 7.85 (d, J=8.8 Hz, 2 H), 7.83 (d, /=2 Hz, 2 H), 7.45 (t, /=2 Hz, 1 H),
7.29 (dd, J=6.8 Hz, J=2.4 Hz, 2 H), 6.91 (dd, J= 6.8 Hz, J= 2.4 Hz, 2 H), 6.69 (d, J =
8.8 Hz, 2 H), 4.65 (s, 4 H), 4.35 (s, 2H), 3.81 (s, 3 H) ppm. *C-NMR (100.6 MHz,
CDCls) 6 159.1, 153.5, 151.2, 144.6, 138.9, 130.2, a29.2, 128.8, 125.6, 122.3, 114.2,
122.4, 553, 473, 456 ppm. HRMS-ESI (m/z): (M+H)  calc. for
C2H20C1aN30:412.0978, observed: 412.0982; 0.89 ppm.
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Synthesis of 2h

NH
o
N+
N

cl
To 100 mg of compound 2g, we added 500 uL of anisole, followed by 5 mL of TFA and
the resulting mixture was stirred in dark for at least 2 h at r.t. After completion of the
reaction, the solvent was removed by rotary evaporator and the resulting solid was re-
dissolved in MeOH and neutralized by saturated NaHCOj3 solution. The resulting mixture
was removed by rotary evaporator and further purified by column chromatography, the
product was eluted in hexane/EtOAc = 65/75 to give compound 2h as an orange solid
(600 mg, 85%). "H-NMR (399.8 MHz, CDCl3) & 7.843 (s, 2 H), 7.83 (d, J = 8.5 Hz, 2H)
7.48 (s, 1 H), 6.757 (d, J = 8.5 Hz, 2H), 4.68 (s, 2 H) *C-NMR (100.5 MHz, CDCl;) &
153.5, 150.1, 145.4, 138.9, 129.5, 125.4, 122.4, 114.6, 45.5 HRMS-ESI (m/z): (M+H)"
calc. for C14H;3C13N3:294.0559, observed: 294.0557; 0.87 ppm.

Synthesis of 2i
HT(\O’H\H/O%
cl /\@/N:N /©/ O (0]

Cl

To a solution of 70 mg (0.24 mmol) of compound 2h in 25 mL of THF, we added (BOC-
aminooxy)acetic acid (92 mg, 0.48 mmol) followed by EDC.HCI (115 mg, 0.6 mmol)
and N,N-diisopropylethylamine (81 pL, 0.48 mmol) with vigorous stirring. The reaction
was allowed to stir for 2 h and then was washed with 20 mL of water followed by 20 mL
of brine. The resulting solid was purified over silica by column chromatography; the
product was eluted in hexane/EtOAc = 3/1 to yield compound 2i as an orange solid (80
mg, 72%). "H-NMR (399.8 MHz, CDCl;) & 10.6 (br, 1 H)7.97-7.88 (m, 7 H), 7.5 (s, 1 H)
4.68 (s, 4H), 4.49 (s, 2 H), 1.53 (s, 9 H) "C-NMR (100.5 MHz, CDCl;) § 167.5, 158.5,
153.16, 148.82, 141.0, 139.0, 130.4, 124.1, 122.7, 129.9, 83.9, 77.1, 45.4, 28.1 HRMS-
ESI (m/z): (M+H)" calc. for C51H4C1,N4Oy: 467.1247, observed: 467.1244; 0.5 ppm.

Synthesis of 2j (HADCAZz)

H
N NH
\"/\o/ 2
N+ (0]

Cl
To 150 mg of the compound 2i, we added 2 mL of TFA and stirred the mixture for 15
min. The TFA was then evaporated by rotary evaporator, and the resulting compound
was purified on silica by column chromatography with no further workup. The product
was eluted in hexane/EtOAc = 7/3 to yield compound 2j as orange solid (108 mg, 92%).
"H-NMR (399.8 MHz, CDCl;) & 7.94 (dt, J= 8.8 Hz, J=2 Hz, 2 H), 7.90 (d, ] = 1.6 Hz,
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2 H), 7.83 (dt, /J=8.8 Hz, /=2 Hz,2 H), 7.61 (t, ] = 1.6 Hz, 1 H), 4.74 (s, 4 H), 4.68 (s,
2 H) ppm. “C-NMR (100.6 MHz, CDOD3) §168.6, 154.4, 150.3, 142.2, 141.2, 132.0,
125.0, 123.6, 121.3 73.1, 46.0 ppm. HRMS-ESI (m/z): (M+H)" calc. for
Ci16H17C1aN4O,: 367.0723 Da, observed: 367.0723, -0.22 ppm.

General Procedure for Synthesis of Peptides Using FMOC Chemistry

We synthesized the peptides using Rink Amide AM resin (Chempep) standard solid
phase amide coupling. Briefly, we transferred 250 mg (0.24 mmol, 0.96 mmol/g) into a
PolyPrep® chromatography column. We set up the column on a manifold vacuum and
equipped it with a three-way stopcock that allows draining of the solvent by vacuum
filtration. Agitation of the resin was done by purging nitrogen gas as described by
Verdine and co-workers.” We added 3 mL of DCM to the dry resin and let it swell for 15
min. We drained the DCM and re-suspended the resin in 3 mL of DMF for 15 min. Then,
we drained the DMF and deprotected the amine with 20% (v/v) piperidine in DMF (4
mL) for 1 min. The deprotection was repeated for another 9 min using fresh 20% (v/v)
piperidine in DMF (4 mL). We washed the resin with DMF (4 x 4 mL), and dissolved
Fmoc-protected amino acid (0.96 mmol, 4 eq.) in 3 mL of DMF (4 mL). HBTU was
added (0.96 mmol, 4 eq) to the solution until dissolution occured. We added this mixture
to the resin, followed by 0.3 mL of DIPEA (1.92 mmol, 8 eq). After 30 minutes of
mixing, we removed the reagents by vacuum filtration and washed the resin with DMF (4
x 4 mL). The Fmoc-deprotection, amide coupling, and washing steps were subsequently
repeated to elongate the sequence up to the N-terminal residue. After Fmoc deprotection,
we washed the resin with DMF (5 x 4 mL), followed by DCM (5 x 4 mL) and left the
resin on the manifold for 10 min to dry under vacuum. We added the cleavage cocktail (4
mL, TFA/H,O/TIPS/Phenol/EDT, 90/2.5/5/5/2.5 (v/v/v/w/v)), to the dried resin and
rocked the column for 2 h to cleave the peptide. Next, we collected the flow through from
the column and washed the resin with TFA (1 mL), and then added this combined
cleavage mixture drop-wise to 40 mL of ice cold diethyl ether in a 50 mL polypropylene
centrifuge tube (Falcon, Thermo Fisher). The mixture was incubated on ice for 30 min,
and the precipitates separated by centrifugation (5 min, 3000 rpm). Then, we decanted the
supernatant and washed the precipitates with cold diethyl ether (2 x 40 mL). After air
drying the peptides were dissolved in 40 mL of 50% aqueous MeCN solution with pH
adjusted to 8 by aqueous ammonia. We then added 500 pL of DMSO to this solution, and
stirred the mixture for 24 h at room temperature in the presence of air to form the
disulfide bonds. The solution was then concentrated to 5 mL by speedvac (Thermo
Scientific) and was purified by HPLC. Addition of 10% acetic acid was often necessary
to dissolve the peptide, before purification.

For HPLC purification, we injected the peptide solution into a semi preparative RP-
HPLC system equipped with C18 column (Waters Symmetryprep 19 x 50 mm). A
gradient of solvent A (MQ water, 0.1% (v/v) TFA) and solvent B (MeCN, 0.1% (v/v)
TFA) was run at a flow rate of 8 mL/min (0-2 min: 2% A; 2-18 min: 2->50% B). We
used same method for all the purifications with HPLC, unless otherwise noted. The
fractions corresponding to the main peak were collected. We removed the acetonitrile by
evaporation under reduced pressure. Lyophilizing the aqueous fraction yielded the
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peptide as white powder. Identity and purity of the peptides was confirmed by LCMS
(Fig. S7).

General Procedure for Periodate Oxidation of Serine in Peptide Sequence
SX,CRRRRC

To an ice cold solution of 10 mg peptide in 10 mL of 100 mM phosphate buffer (pH 7.4)
we added a solution of NalO4 (2 eq) in one portion. The reaction mixture was incubated
on ice for 10 min and at r.t. for an additional 10 min and then was purified with HPLC on
C18 silica. In some cases, we observed precipitation. In this case, the solution was
acidified to pH~ 5 with 10% AcOH to dissolve the peptide and then was immediately
injected to HPLC. Identity and purity of the peptides was confirmed by LCMS (Fig. S8).

General Procedure for Synthesis of Bicyclic Peptide

To a solution of 5 mg of oxidized peptide in 500 L. DMF, we added 100 pL of a
solution of HADCAz (1.2 eq) in DMF. We incubated the reaction for 2 h on a 55 °C bath
and then diluted it to 2.5 mL with DMF. We further diluted the mixture by adding 2.5 mL
of H,0 and then added 1.2 equivalent of TCEP solution (25 mM, pH 8.0) in two portions
in 15 min intervals. The pH of the mixture was carefully adjusted to 8 and the reaction
mixture was incubated at r.t. for 45 min. We then acidified the reaction to pH 5 with 10%
AcOH solution and purified the product by HPLC. The identity of the peptides was
confirmed by HRMS and/or NMR (Figs. S2, S9-S13).

Kinetics and Switching Efficiency of HADCAz and Bicyclic Peptides.

To quantify switching efficiency of the azobenzene, we injected 5 puL of a 100 uM
solution of the Azb containing compound to HPLC. We repeated the injections 0,11, 22,
60, 120, 240 and 720 min after irradiation by 365 nm light. The absorption of the peaks
was measured at 420 nm (isosbestic point) (Figs. S1, S5 and S6).

Simulation Methods

Molecular dynamics (MD) simulations were performed for four cyclic peptides (CP3a,
CP3b, CP3c, and CP3d). For each peptide, two different initial structures were built using
the Maestro 10.2 software of Schrodinger.' The topology file for each peptide was
generated using the Schrodinger utility ffld server and converted to the GROMACS
format using the ffconv.py script.”> All MD simulations in this study were performed
using the GROMACS 4.6.7 suite’ with OPLS 2005 force field and TIP4P water model.*
The initial structure was first energy minimized for 1000 steps and then solvated in a
cubic box of water molecules. The box size was chosen such at the minimum distance
between the peptide and the box wall is 1.5 nm. Explicit counter ions were also added to
neutralize the net charge of the system. With all heavy atoms of the peptide restrained,
the solvated system was further energy minimized for 5000 steps.
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Each initial structure was subjected to 100 independent runs starting from different initial
geometries. With all the heavy atoms of the peptide remain restrained to their initial
coordinates; a 50 ps NVT (isochoric-isothermal) equilibration followed by a 50 ps NPT
(isobaric-isothermal) equilibration at 300K/latm was first implemented for each run to
adjust the solvent density. The well-equilibrated system then underwent a simulated
annealing process in the NVT ensemble, during which the system temperature was first
increased to 600 K within 500 ps and maintained at 600 K for an additional 500 ps. The
temperature was then decreased gradually to 300 K within 1 ns. During the simulated
annealing, the position restraints for the peptide were removed; the azobenzene motif and
the oxime bond were harmonically restrained to the cis configuration with a force
constant of 1000 kcal/mol/rad®. In all the simulations, the temperature was regulated
using the v-rescale thermostat’ with a coupling time constant of 0.1 ps. To avoid the “hot
solvent/cold solute” artifact,”” two separated thermostats were applied to the solvent
(water and ions) and the peptide. The pressure was maintained using the isotropic
Parrinello-Rahman barostat® with a coupling time of 2.0 ps and a compressibility of 4.5
x10™ bar"'. All bonds were constrained with the LINCS algorithm’ allowing a 2 fs time
step to be used with the leapfrog integrator.'” The non-bonded interactions (Lennard-
Jones and electrostatic) were truncated at 1.0 nm. Long-range electrostatic interactions
were treated using the Particle Mesh Ewald (PME) summation method.'" A long-range
analytic dispersion correction was applied to both the energy and pressure to account for
the truncation of Lennard-Jones interactions.'?

S12



50.8

Wavelength (nm)
--No Irradiation —400 nm (15min)

0
e o 9 9o o 9 o O O 9O O O o
Q ® © ¥ N O N ©O ©o © < N O
® o F o © 9~ N ® ® ¥ o © 9~

Wavelength (nm)

-- No Irradiation— 470 nm (15min)

_.0.8]

S5 e 52'0

<0.6. " 16

s Y c [

204/ /N step 7

S e 808{ [/ |

202 204l /

<, e - N L
EEEEEE] N EEEEEE
N ™ [se) < w0 © M~ N (32} [sp] < (o) © ~

Wavelength (nm) Wavelength (nm)
--No Irradiation — 380 nm (15min) -- No Irradiation

Fig. S1 (A)-(D) Absorption spectra of compounds 1a-1d before and after irradiation.
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Fig. S2 (A)-(D) LCMS traces confirm the synthesis of bicyclic peptides 3a-3d. MALDI-
MS shows the isotopic pattern for the product (for high resolution MS see Fig. S9). *
indicates HADCAz adduct of reaction with formaldehyde (DMF impurity). ** indicates
HADCAZz byproducts with unidentified structure.
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Fig. S5 Absorption spectra of 3a-3d before and after irradiation with 365 nm light.
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Thermal relaxation of 3a-3d after irradiation with 365 nm light
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Fig. S6 Kinetics of thermal relaxation for 3a-3d. (A) LCMS traces for thermal relaxation
of 3a-3d after irradiation with 365 nm light. (B) Fitting the kinetic data in a first order
kinetic model determined the relaxation rate, cis-ratio at photostationary state (Ag) and
relaxation half-life.
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Fig. SI0 LCMS traces of the reaction between the peptide SDKSWCRRRRC and
HADCAz. (A) LCMS trace of the purified peptide SDKSWCRRRRC. (B)
SDKSWCRRRRC after oxidation of the N-terminal serine with sodium periodate. The
periodate oxidation does not break the disulfide bond. (C) LCMS trace of HADCAZz prior
to reaction. (D) An oxime bond is formed after reaction of HADCAz with the oxidized
peptide. (E) LCMS trace of the bicyclized peptide after reduction with TCEP.
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Note: Cis isomer has little absorption at 360nm and is only visible by monitoring at 220nm.

Fig. S11 LCMS traces of the reaction between the peptide SKSWCRRRRC and
HADCAz. (A) LCMS trace of the purified peptidle SKSWCRRRRC. (B)
SKSWCRRRRC after oxidation of the N-terminal serine with sodium periodate. The
periodate oxidation does not break the disulfide bond. (C) LCMS trace of HADCAZz prior
to reaction. (D) An oxime bond is formed after reaction of HADCAz with the oxidized
peptide. (E) LCMS trace of the bicyclized peptide after reduction with TCEP.
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Note: Cis isomerhas little absorption at 360nm and is obly visible by monitoring at 220nm.

Fig. S12 LCMS traces of the reaction between the peptide SSWCRRRRC and HADCAz.
(A) LCMS trace of the purified peptide SSWCRRRRC. (B) SSWCRRRRC after
oxidation of the N-terminal serine with sodium periodate. The periodate oxidation does
not break the disulfide bond. (C) LCMS trace of HADCAz prior to reaction. (D) An
oxime bond is formed after reaction of HADCAz with the oxidized peptide. (E) LCMS
trace of the bicyclized peptide after reduction with TCEP.
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LC trace of peptide product
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* HADCAz adduct of reaction with formaldehyde (DMF impurity)
** shows the peaks for byproducts with unidentified mass.
Note: Cis isomer has little absorption at 360nm and is only visible by monitoring at 220nm.

Fig. S13 LCMS traces of the reaction between the peptide SWCRRRRC and HADCAz.
(A) LCMS trace of the purified peptide SWCRRRRC. (B) SWCRRRRC after oxidation
of the N-terminal serine with sodium periodate. The periodate oxidation does not break
the disulfide bond. (C) LCMS trace of HADCAZz prior to reaction. (D) An oxime bond is
formed after reaction of HADCAz with the oxidized peptide. (E) LCMS trace of the
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bicyclized peptide after reduction with TCEP.
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Fig. S14 The structures of both HADCAZz and peptide backbone in (A) light 3a and (B)
dark 3a diverged in 100 simulations (see Movies S1 and PBD files in Derda PDB.zip in
Supporting Information). In (A) the images represent all structures from each cluster; (B)
shows 10 representative structures from each “cluster”. In all cases, the structures are
grouped in space to overlay N=N bond and maximize the overlay of the azobenzene core.
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Fig. S15 (A) Representative structure of dark 3b, 3¢, 3d and (B) four representative
structures from four cluster of light 3b, 3¢, 3d obtained after 100 simulations (see PBD
files in Derda_PDB.zip in Supporting Information).
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Fig. S16 Omega dihedral plot of the azobenzene N=N bond (top plot in each group) and
the linker amide bond (bottom plot in each group) for dark 3a, 3b, 3¢, and 3d. The
dihedral angle of 0° in 3a indicates cis conformation of the amide bond. Each dot
represent the result of a separate MD simulation.
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ROESY-NMR of 3a (expanded)
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Fig. S17 Comparison of the NOE spectra of compounds 3a and 3d indicating presence of
cis and trans aromatic amide bond respectively.
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NMR spectra of synthesized compounds

"H-NMR of 1a (asterisk shows residual EtOAc)

]
399.794 MHz H1 1D in cdcl3 (ref. to CDCI3 @ 7.26 ppm), temp 26.5 C -> actual temp = 27.0 C, autoxdb probel
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BC-NMR of 1a

]
100.539 MHz C13[H1] 1D in cdcl3 (ref. to CDCI3 @ 77.06 ppm), temp 26.5 C -> actual temp = 27.0 C, autoxdb probel
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"H.NMR of 12’

399.796 MHz H1 1D in dmso (ref. to DMSO @ 2.49 ppm), temp 26.5 C -> actual temp = 27.0 C, autoxdb probe
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BC-NMR of 12’

100.540 MHz C13[H1] 1D in cd3od (ref. to CD30D @ 49.0 ppm), temp 26.5

C -> actual temp

= 27.0 C, autoxdb probe
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"H-NMR of 1b

399.796 MHz H1 1D in dmso (ref. to DMSO @ 2.49 ppm), temp 26.5 C -> actual temp = 27.0 C, autoxdb probe
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BC-NMR of 1b

27.0 C, autoxdb probe

to DMSO @ 39.5 ppm), temp 26.5 C -> actual temp

100.540 MHz C13[H1] 1D in dmso (ref.
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"H.NMR of 1¢

399.986 MHz H1 1D in cd3od (ref. to CD30D @ 3.30 ppm), temp 25.9 C -> actual temp = 27.0 C, onenmr probel
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BC-NMR of 1¢

100.588 MHz C13[H1] 1D in cd3od (ref. to CD30D @ 49.0 ppm), temp 25.9 C -> actual temp = 27.0 C, onenmr probel
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"H.NMR of 1dA

399.794 MHz H1l 1D in cdcl3 (ref. to CDC1l3 @ 7.26 ppm), temp 26.5 C -> actual temp = 27.0 C, autoxdb probe
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BC-NMR of 1dA

100.587 MHz C13[H1] 1D in cdcl3 (ref. to CDC1l3 @ 77.06 ppm), temp 25.9 C -> actual temp = 27.0 C, onenmr probe
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"H.NMR of 1d

399.794 MHz H1 1D in cdcl3 (ref. to CDC1l3 @ 7.26 ppm), temp 26.5 C -> actual temp = 27.0 C, autoxdb probe
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BC-NMR of 1d

= 27.0 C, colddual probe

temp 27.7 C -> actual temp

125.691 MHz C13[H1] 1D in cdcl3 (ref. to CDC1l3 @ 77.06 ppm),
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"H-NMR of 2b

399.986 MHz H1l 1D in cd3od (ref. to CD30OD @ 3.30 ppm), temp 25.9 C -> actual temp = 27.0 C, onenmr probe
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BC-NMR of 2b

100.588 MHz C13[H1] APT_ad in cd3od (ref. to CD30OD @ 49.0 ppm), temp 25.9 C -> actual temp = 27.0 C, onenmr probe
C & CH2 same, CH & CH3 opposite side of solvent signal
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"H-NMR of 2¢

399.796 MHz H1 1D in cd3od (ref.

to CD30D @

3.30 ppm),

temp 26.5 C -> actual temp = 27.0 C, autoxdb probe
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BC-NMR of 2¢

100.540 MHz C13[H1] APT ad in cd3od (ref. to CD30D @ 49.0 ppm), temp 26.5 C -> actual temp = 27.0 C, autoxdb probe
C & CH2 same, CH & CH3 opposite side of solvent signal
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"H-NMR of 2d

399.794 MHz H1 1D in cdcl3 (ref. to CDC1l3 @ 7.26 ppm), temp 26.5 C -> actual temp = 27.0 C, autoxdb probe
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BC-NMR of 2d

100.539 MHz C13[H1] 1D in cdcl3 (ref. to CDC1l3 @ 77.06 ppm), temp 26.5 C -> actual temp = 27.0 C, autoxdb probe
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"H-NMR of 2e

399.794 MHz H1 1D in cdcl3 (ref. to CDC13 @ 7.26 ppm),

«
o
~
L

—6.671

\—6. 668

temp 26.5 C -> actual temp

4.500

27.0 C, autoxdb probe

Cl
(
HyN
Cl
[
1
L I T T I X ol N o F I I L I T 1T 17T I L

Wy iy
10 9 8 Tolss . L

1.96

S48



BC-NMR of 2e

100.539 MHz C13[H1] 1D in cdcl3 (ref. to CDC1l3 @ 77.06 ppm), temp 26.5 C -> actual temp = 27.0 C, autoxdb probe
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"H-NMR of 2f

autoxdb probe

27.0 ¢,

399.794 MHz H1 1D in cdcl3 (ref. to CDCl3 @ 7.26 ppm), temp 26.5 C -> actual temp
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BC-NMR of 2f

100.539 MHz C13[H1] 1D in cdcl3 (ref. to CDC1l3 @ 77.06 ppm), temp 26.5 C -> actual temp = 27.0 C, autoxdb probe
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'H-NMR of 2g

/
Cl O
Ny avs
N
Cl

9.984 MHz H1 1D in cdcl3 (ref. to CDC13 @ 7.26 ppm), temp 25.9 C -> actual temp = 27.0 C, onenmr probe
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BC-NMR of 2g
<:> /
Cl O
NONH
Cl

100.587 MHz C13[H1] 1D in cdcl3 (ref. to CDCI3 @ 77.06 ppm), temp 25.9 C -> actual temp = 27.0 C, onenmr probel
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"H-NMR of 2h

399.794 MHz H1l 1D in cdcl3 (ref. to CDC1l3 @ 7.26 ppm), temp 26.5 C -> actual temp = 27.0 C, autoxdb probe
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BC-NMR of 2h

100.539 MHz C13[H1] 1D in cdcl3 (ref. to CDC1l3 @ 77.06 ppm), temp 26.5 C -> actual temp = 27.0 C, autoxdb probe

oceb a8 &85 W - o
s O m O n @« =« O M O I~ n
m o ® o N ~ ~ © n
2832 339 9 TT T i
H{I WUI (JJ
N
N
Cl
a
[}
8
240 220 200 180 160 140 120 100 80 60 40 20 0 ppm

S55



"H-NMR of 2i
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BC-NMR of 2i

100.539 MHz C13[H1] 1D in cdcl3 (ref. to CDC1l3 @ 77.06 ppm), temp 26.5 C -> actual temp = 27.0 C, autoxdb probe
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'H-NMR of 2j

399.986 MHz H1 1D in cd3od (ref. to CD30D @ 3.30 ppm), temp 25.9 C -> actual temp = 27.0 C, onenmr probel

(410
90€"
0TE"
vie*
81¢"

669"
SvL®

v68*

209°
909°
609"
128"
6€8°
144
888"
268"
ZE6"
LEG"
vS6°

Cl

Cl

€

|

hhhhhr\hl\

HOS

bpm

7

-671.85

3

7
o
2.00

1.97

(S
1.92

8.0

S58



BC-NMR of 2j

100.588 MHz C13[H1] 1D in cd3od (ref. to CD30D @ 49.0 ppm), temp 25.9 C -> actual temp = 27.0 C, onenmr probel
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List of "H-NMR signals of in 3d HoN'

Residue |NH |ppm |H, |ppm | Hg ppm H, ppm | Hs ppm | Hg ppm
Asp 101 | 8.31 | 100 | 4.66 | 102,103 | 2.81 --- --- --- -— |- ---
Lys 89 | 7.65 |88 4.15 190,91 1.53,1.38 192,93 | 1.38 | 94,95 | 2.71 gg’ 3.01
Ser 84 |7.76 | 83 4.2 85,86 3.58 --- --- --- -— |- ---
Trp 74 | 7.56 |73 4.34 | 75,76 3.05,2.96 | --- --- --- -— |- ---
Cys 68 | 7.93 |67 4.5 69,70 2.87,2.66 | --- --- --- -— |- ---
Arg 56 |7.74 | 55 4.26 | 57,58 1.7,1.63 59,60 |1.47 | 61,62 |3.06 | 63-66 | 7.02
Arg 44 | 7.77 | 43 4.08 | 45,46 1.74,1.61 | 47,48 | 1.46 |49,50 |3.01 | 51-54 | 7.06
Arg 32 | 7.68 | 31 4.12 | 33,34 1.78,1.63 | 35,36 | 1.48 | 37,38 | 3.03 | 39-42 | 7.05
Arg 20 | 798 |19 4.05 |21,22 1.78,1.57 | 23,24 | 1.48 | 25,26 |3.03 | 27-30 | 7.07
Cys 16 |7.62 |15 4.15 | 13,14 2.72,2.53 | --- --- --- -— |- ---
Trp (Ar) |77 |9.79 | 78 7.01 |79 7.32 80 7.03 | 81 6.93 | 82 7.38
HADCAz | 1,2 | 4.76 Z; 3.83 (11,12 |3.71

3 9.67 | --- --- --- --- o o o R o

4,5 | 759 6,7 |7.73 |--- --- o o o R o

8 7.65 |9 7.61 |10 7.32 o o o R o

105 | 6.86 | --- --- --- --- o o o R o
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"H-NMR of 3d

699.765 MHz H1 water_ES in cd3cni

10

ugms

T T T | T T T | T T T T | T T T |
5 4 3 2

S61




TOCSY-NMR of 3d
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TOCSY-NMR of 3d (expanded)
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699.765 MHz H1 gmqcosy in cd3cni

gmCOSY-NMR of 3d
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NOESY-NMR of 3d
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List of "H-NMR signals of in 3¢

H
6

I; 93
i 92
95 H
N 99
geg7 H
Residue |NH |ppm | H, |ppm | Hg ppm H, ppm | H; ppm | H ppm
Lys 89 |805|88 [435 /90,91 |1.67,1.54 [92,93 | 124 |94,95 |1.54 |96,97 |2.82
Ser 84 |7.62 |83 427 |85,86 |3.34,343 | --- - - - - -
Trp 74 | 7.75 |73 | 4.56 [75,76 |3.13,3.08 | --- --- - - - -
Cys 68 | 790 |67 |452 [69,70 |2.88,2.60 |--- - - - -
Arg 56 | 7.78 |55 |4.08 |57,58 |1.74,1.62 |59,60 | 143 |61,62 |3.01 |63-66 |7.09
Arg 44 17.66 |43 |4.12 | 45,46 | 1.80,1.63 | 47,48 | 149 |49,50 |3.07 |51-54 |7.04
Arg 32 | 7.66 |31 |425 |33,34 |1.80,1.63 |35,36 | 149 |37,38 [3.07 |39-42 |7.08
Arg 20 | 798 |19 [4.06 |21,22 |1.77,1.57 |23,24 |1.50 |25,26 |3.07 |27-30 |7.09
Cys 16 |8.13 |15 |424 13,14 |2.59,249 |- - - - - -
Trp(Ar) |77 98178 |7.05 |79 7.3 80 7.04 |8l 6.96 | 82 7.43
HADCAz | 1,2 | 4.72 Z;’ 3.68 | 11,12 |3.83 - --- -—- -—- -—- -—-
3 9.63 | --- |- -—- — — — — — — —
4,5 17.62 6,7 |7.80 | --- -—- — — — — —
8 7.50 19 7.66 |10 7.28 - - - - - -
100 | 6.88 | --- | --- — -—- — — — — — —
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"H-NMR of 3¢

699.765 MHz H1 water_ES in cd3cni
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TOCSY-NMR of 3¢
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TOCSY-NMR of 3¢ (expanded)
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gmCOSY-NMR of 3¢
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NOESY-NMR of 3¢
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List of "H-NMR signals of in 3b

Residue | NH | ppm | H, | ppm | Hp ppm | H, |ppm Hs; | ppm | H: | ppm

Ser 84 |7.34 |83 | 4.0385,86]322 | |- | |- |-— |—
Trp 74 | 755 |73 | 4.67|75,76 ggg
Cys 68 | 798 |67 450 69,70 | 2% | | | | | |
Arg 56 | 7.65 |55 | 4265758 | > |20 148 | |3.06 |7 | 710
Arg 44 775 |43 |4.19 45,46 fgg j;’ }gé ‘5‘3 3.08 2411 7.07
Arg 32 767 |31 |4.10 33,34 }Zg gg 1.45 g; 297357 | 7.00
Arg 20 |8.14 |19 |4.08 21,22 }Zg o }2(9) 32 3.05 % 7.06
Cys 16 [7.68 |15 4091314 |50 | |~ | |~ |~ |-

Trp(Ar) |77 |9.85 |78 69779 7.32 | 80 7.07 81 693 82 |7.38
HADCAz | 1,2 | 4.17 3.82 11,12 | 3.74 | --- - e e

45765 |67 775 — |— [ |-
8 |764 |9 [753[10 [732 [— |-

S72



TOCSY-NMR of 3b
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COSY-NMR of 3b
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NOESY-NMR of 3b
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"H-NMR of 3a

699.766 MHz H1 water_ES in cd3cn
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TOCSY-NMR of 3a
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699.765 MHz H1 ROESY_ES in cd3cn
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NOESY-NMR of 3b (expanded)
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NOESY-NMR of 3b (expanded)
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H6,H7 H79

COSY-NMR of 3b (expanded)
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