Supplementary material

Stereoselective synthesis of natural product inspired carbohydrate fused pyrano[3,2 -c]quinolones as antiproliferative agents

Priti Kumari, ${ }^{\text {a }}$ Chintam Narayana, ${ }^{\text {a }}$ Shraddha Dubey, ${ }^{\text {b }}$ Ashish Gupta ${ }^{* b}$ and Ram Sagar ${ }^{* a, c}$
${ }^{\text {a D Department of Chemistry, School of Natural Sciences, Shiv Nadar University (SNU), NH91, Tehsil-Dadri, Gautam }}$ Buddha Nagar, Uttar Pradesh, 201314, India.
${ }^{\text {b }}$ Department of Life Sciences, School of Natural Sciences, Shiv Nadar University (SNU), NH91, Tehsil-Dadri, Gautam Buddha Nagar, Uttar Pradesh, 201314, India.
${ }^{\text {c Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India. }}$
*E-mail (Corresponding author): ram.sagar@snu.edu.in; ashish.gupta@ snu.edu.in,

S. No.	Contents	Page No.
1	Synthesis of Compound 1a and 1b	S2
2	Synthesis and NMR data of 4-hydroxyquinolones1-11	S2-S6
3	Copies of ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of pyrano[3,2-c]quinolones12-33a/b	S7-S28
4	NOE, ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY and ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC spectra of compound $\mathbf{1 2}$	$\mathrm{S} 29-\mathrm{S} 30$
5	Copies of ${ }^{1} \mathrm{H} \&{ }^{13} \mathrm{C}$ NMR of $\mathbf{3 4}$ and N-methyl pyrano[3,2-c]quinolones $\mathbf{3 5}$	$\mathrm{S} 31-\mathrm{S} 32$
6	Cell viability data for all compounds against MCF-7 and HepG2 cell lines	S33-S34

General experimental procedures

Synthesis of 2-C-formyl galactal 1a and 2-C-formyl glucal 1b: In a 100 ml round bottom flask 30 ml anhydrous DMF was added followed by dropwise addition of $\mathrm{POCl}_{3}(0.6 \mathrm{~mL}, 21.6 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$ and resulting mixture was stirred for 30 min under Argon atmosphere. A solution (dissolved in anhydrous DMF) of 3,4,6-tri- O-benzyl-D-galactal ($2.99 \mathrm{~g}, 7.20 \mathrm{mmol}$) was added to this dropwise within 30 min . The resulting reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ to room temperature for 5 h which shows disappearance of starting material (TLC). Reaction mixture was quenched by slow addition of (within 30 min) of chilled $\mathrm{NaHCO}_{3}(30 \mathrm{~mL})$ solution at $0{ }^{\circ} \mathrm{C}$. Mixture was extracted with ethyl acetate $(3 \times 30 \mathrm{~mL})$.and combined organic layer washed with brine solution $(3 \times 30 \mathrm{~mL})$.then dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The combined organic layer was evaporated under vaccume to get crude residue which was purified though flash column chromatography and pure 2-C-formyl galactal 1a was isolated in 94% isolated yield (3.0 g). Similarly using 3,4,6-tri-O-benzyl-D-galucal and adopting above protocol 2-C-formyl glucal 1b was obtained in $54 \%(1.7 \mathrm{~g})$ isolated yield. ${ }^{1}$

Synthesis of 4-hydroxyquinolones 1-11: In an oven dried 25 ml round bottom flask Aniline (1 $\mathrm{mL}, 1.024 \mathrm{gm} 10.99 \mathrm{mmol}$) and Meldrum's Acid ($1.583 \mathrm{gm}, 10.99 \mathrm{mmol}$) were taken and heated at $80^{\circ} \mathrm{C}$ for 2 h . After consumption of starting material (TLC), added ethylacetate and aquous solution of sodium bicarbonate. Resulting suspension partitioned in separating funnel and aqueous layer washed with ethyl acetate $(3 \times 50 \mathrm{~mL})$. The aqueous layer acidified with conc. HCl until pH 1-2 then extracted with dichloromethane $(3 \times 35 \mathrm{~mL})$. The combined organic layer dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ filtered and evaporated on rotary evaporator to get solid residue which was forwarded next step without further purification. The solid residue (1.9 g) and Eaton's reagent ($9.5 \mathrm{~g}, 5$ equiv/w) was heated at $80^{\circ} \mathrm{C}$ for 1 h or till disappearance of starting material (TLC). The reaction mixture cooled down and added ice cold water and keep stirring for 30 min then solid precipitate appeared which was filtered using Buchner funnel under vaccum till dryness to get almost pure 4-hydroxyquinolone $\mathbf{1}$ in 80% yield (1.41 gm). ${ }^{2}$ Similar reaction protocol was followed for preparation of various other 4-hydroxyquinolone (2-11 and 34) using corresponding anilines (Table S1).

References

1. N.G. Ramesh, K.K. Balasubramanian, Tetrahedron Lett. 1991, 32, 3875-3878.
2. (a) S-J. Park, J-C Lee, K-I.Lee. Bull. Korean Chem. Soc. 2007, 28, 1203-1205, (b) K. Arya, M. Agarwal, Bioorg. Med. Chem. Lett. 2007, 17, 86-93.

Table S1. Synthesis of 4-hydroxyquinolone 1-11.

	R		 i) $85^{\circ} \mathrm{C}, 1-2 \mathrm{~h}$, then ii) Eaton's reagent, $65^{\circ} \mathrm{C}, 1-2 \mathrm{~h}$				
Entry		\mathbf{R}^{2}	\mathbf{R}^{3}	R^{4}	Product	Time (h)	Yield (\%)
1	H	H	H	H	1	1	80
2	H	H	H	F	2	2	70
3	H	H	OPh	H	3	2	69
4	H	H	H	NO_{2}	4	1	53
5	H	H	H	OCF_{3}	5	2	81
$6^{\text {a }}$	H	H-	CF_{3}	H	6	1	55
7	H	H	H	CHMe_{2}	7	2	70
$8^{\text {a }}$	H	H	Cl	H	8	1	60
$9^{\text {a }}$	H	H	Br	H	9	2	65
10	H	H	H	CF_{3}	10	1	58
11	H	Cl	CF_{3}	H	11	2	51

4-hydroxyquinolin-2(1H)-one (1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d 6$): $\delta 11.31$ (brs, $1 \mathrm{H}, \mathrm{OH}$), $11.20(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.76(\mathrm{dd}, J=1.2 \mathrm{~Hz}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 7.47-7.45(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6)$, 7.25 ($\mathrm{d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8$), $7.14(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7), 5.72(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-3){ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d6), $\delta: 163.9,162.8,139.6,131.3,123.1,121.4,115.5,115.4,98.6$ (C-3). HRMS(ESI), calcd, m/z C9 $\mathrm{H}_{7} \mathrm{NO}_{2},[\mathrm{M}+\mathrm{H}]^{+}$162.0549; Found: 162.0573.

8-Flouro-4-hydroxyquinolin-2(1H)-one (2). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta 11.53$ (brs, 1H, OH), $11.21(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.61(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 7.41(\mathrm{ddd}, J=11.2 \mathrm{~Hz}, J=8.0 \mathrm{~Hz}$ and $J=$ $1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7), 7.13(\mathrm{td}, J=4.8 \mathrm{~Hz}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 5.79(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-3),{ }^{13} \mathrm{C}$ NMR (100

MHz, DMSO- $d 6$): $\delta 163.5,162.4,121.3,121.2,118.9,117.8,116.5,116.3,99.6$ (C-3). HRMS(ESI), calcd, m/z C9 $\mathrm{H}_{6} \mathrm{FNO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$180.0455;Found: 180.0479.

7-phenoxy-4-hydroxyquinolin-2(1H)-one(3) ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d6): 11.44 (s, 1H, OH), $11.16(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.78(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 7.47-6.80(\mathrm{~m}, 7 \mathrm{H}, \mathrm{ArH}), 5.67(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-$ 3), ${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO-d6): $\delta 164.1,163.0,159.9,141.2,130.7,130.1,125.2,117.3$, 112.6, 103.1, HRMS(ESI), calcd, m/z C ${ }_{15} \mathrm{H}_{11} \mathrm{NO}_{3},[\mathrm{M}+\mathrm{H}]^{+}$254.0817; Found: 254.0849

8-Nitro-4-hydroxyquinolin-2(1H)-one (4). (400 MHz, DMSO-d6): $\delta 12.07(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 10.60(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{NH}$), 8.45 (dd, $J=8.4 \mathrm{~Hz}$ and $J=1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), 8.26 (dd, $J=8.0 \mathrm{~Hz}$ and $J=1.2 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-7), 7.37$ (t, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 5.88(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-3),{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d $): ~ \delta 162.6$, $133.9,131.2,128.8,121.2,118.4,98.9$ (C-3), HRMS(ESI), calcd, m/z $\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}_{4},[\mathrm{M}+\mathrm{H}]^{+}$ 207.0400;Found: 207.0432.

8-triflouromethoxy-4-hydroxy-2H-benzopyran-2-one (5). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): δ 11.62 (brs, $1 \mathrm{H}, \mathrm{OH}$), 11.37 (brs, $1 \mathrm{H}, \mathrm{NH}$), 7.81 (dd, $J=8.0 \mathrm{~Hz}$ and $J=1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), 7.57 (dd, $J=8.0 \mathrm{~Hz}$ and $J=1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7), 7.21(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 5.81(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-3) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d6): $\delta 163.7,162.2,134.7,132.6,123.6,122.4,121.3,117.8,99.6$ (C3), $\mathrm{HRMS}(\mathrm{ESI})$, calcd, $\mathrm{m} / \mathrm{z} \mathrm{C} 10 \mathrm{H}_{6} \mathrm{~F}_{3} \mathrm{NO}_{3},[\mathrm{M}+\mathrm{H}]^{+}$246.0373; Found: 246.0411.

6

7-triflouromethyl-4-hydroxyquinolin-2(1H)-one (6). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta 11.61$ (brs, 1H, OH), 11.48 (brs, 1H, NH), 7.98 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), $7.62-7.58(\mathrm{~m}, 1 \mathrm{H}), 7.45$ (d, J $=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 5.86(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-3),{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d6): $\delta 163.7,162.8,162.0$, 141.8 , 139.4, 130.4, 124.7, 121.2, 112.4, 100.6 (C-3), HRMS(ESI), calcd, m/z C ${ }_{10} \mathrm{H}_{6} \mathrm{~F}_{3} \mathrm{NO}_{2}$, $[\mathrm{M}+\mathrm{H}]^{+}$230.0423; Found: 230.0458.

8-isopropyl-4-hydroxyquinolin-2(1H)-one (7). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta 10.69$ (brs, 1 H NH), 7.72 (dd, $J=8.0 \mathrm{~Hz}$ and $J=1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), $7.50(\mathrm{dd}, J=7.9 \mathrm{~Hz}$ and $J=1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ 7), $7.18(\mathrm{t}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 5.86(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-3), 3.60$ (septate, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$ of CHMe_{2}), 1.19 (d, $J=6.8 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH} \mathrm{Ce}_{2}$), ${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- $d 6$): $\delta 168.9,168.8$, 141.2, 139.2, 132.8, 126.7, 125.7,120.7, 102.3 (C-3), 30.7 (CH), 28.2 (Me_{2}), HRMS(ESI), calcd, $\mathrm{m} / \mathrm{z} \mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NO}_{2},[\mathrm{M}+\mathrm{H}]^{+}$204.1019; Found: 204.1016.

8
7-chloro-4-hydroxyquinolin-2(1H)-one (8). ${ }^{1} \mathrm{H} \operatorname{NMR}(400 \mathrm{MHz}$, DMSO-d6): $\delta 11.51$ (brs, 1H, OH), 11.36 (brs, $1 \mathrm{H}, \mathrm{NH}$), 7.76 (d, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), 7.41 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$), 7.18-7.15 (m, 1H), 5.80 (s, 1H, H-3), ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d6): $\delta 163.9,162.9,142.2,135.7$, $131.3,130.3,125.1,121.7,115.4,112.5,100.2$ (C-3), HRMS(ESI), calcd, m/z C9 $\mathrm{H}_{6} \mathrm{ClNO}_{2}$, $[\mathrm{M}+\mathrm{H}]^{+}$196.0159; Found: 196.0170.

9
7-bromo-4-hydroxyquinolin-2(1H)-one (9). ${ }^{1}$ H NMR (400 MHz, DMSO-d6): $\delta 11.51$ (brs, 1H, OH), 11.28 (brs, $1 \mathrm{H}, \mathrm{NH}$), $7.70(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 7.43(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 7.18-7.15$ $(\mathrm{m}, 1 \mathrm{H}), 5.80(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-3),{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d6): $\delta 163.8,162.7,142.3,131.5$,
128.6, 125.1, 117.7, 114.6, 100.3 (C-3), HRMS(ESI), calcd, m/z C9 $\mathrm{H}_{6} \mathrm{BrNO}_{2},[\mathrm{M}+\mathrm{K}]^{+} 277.9219$; Found: 277.0997.

8-triflouromethyl-4-hydroxyquinolin-2(1H)-one (10). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta 11.81$ (brs, $1 \mathrm{H}, \mathrm{OH}$), 9.94 (brs, $1 \mathrm{H}, \mathrm{NH}$), 8.13 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), 7.90 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$), 7.33 (t, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$), 5.88 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-3$).. ${ }^{13} \mathrm{C}$ NMR (400 MHz, DMSO-d6): $\delta 169.9$, $168.9,163.5,162.5,141.2,134.4,131.5,129.1,128.3,123.0,121.3,120.4,100.1$ (C-3), HRMS(ESI), calcd, m/z C $10 \mathrm{H}_{6} \mathrm{~F}_{3} \mathrm{NO}_{2},[\mathrm{M}+\mathrm{H}]^{+}$230.0423; Found: 230.0458.

11
6-chloro-7-triflouromethyl-4-hydroxyquinolin-2(1H)-one (11). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO$d 6): \delta 11.55$ (s, $1 \mathrm{H}, \mathrm{OH}$), 7.93 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-8$), 7.71 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-5$), 5.86 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-3$); ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d6): $\delta 168.2,167.3,165.7,142.7,130.5,129.2,128.8,126.6,123.9,120.3,106.2$ (C-3), $\operatorname{HRMS}(E S I)$, calcd, $m / z \quad \mathrm{C}_{10} \mathrm{H}_{5} \mathrm{ClF}_{3} \mathrm{NO}_{2}, \quad[\mathrm{M}+\mathrm{H}]^{+}$264.0034; Found: 264.0037.

4-hydroxy-1-methylquinolin-2(1H)-one (34). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta 11.34$ (s, 1H, $\mathrm{OH}), 7.89(\mathrm{dd}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8), 7.61(\mathrm{ddd}, J=1.2 \mathrm{~Hz}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 7.46(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 7.24(\mathrm{td}, J=0.8 \mathrm{~Hz}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7), 5.88(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-3), 3.53(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-$ CH_{3}); ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}): $\delta 162.9,161.4,140.4,131.7,123.5,121.6,116.5,114.9$, 98.4, $28.8\left(\mathrm{CH}_{3}\right)$; HRMS(ESI), calcd, m/z C ${ }_{10} \mathrm{H}_{9} \mathrm{NO}_{2},[\mathrm{M}+\mathrm{H}]+176.07$; Found: 176.0805.

14

¢	880	\%̛ơocom		$\overline{\text { I }}$
¢O\%	过	\%.0.0		¢
11	T	-5		

$\underset{\text { PK－264 }}{\text { Pon 16－2017 }}$

$\stackrel{\square}{¢}$	\％$\stackrel{0}{6}$$\stackrel{\sim}{1}$		N	∞ 8 $\stackrel{8}{\circ}$	\％
8		－M	8		
\square		ご边方	T		

16

[^0]

Dec25-2017
PK-300

Dec20－2017 PK－295

$\stackrel{\infty}{\sim}$	¢		へ⿹\zh26灬ch
๕ิ	＋		
－		－－	－－

-104.303
-97.003

1	1	1	1	1	1	1	1	1	－	1	1	1	1	1	1	1	1	1
180	170	160	150	140	130	120	110	100	$\begin{gathered} 90 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	80	70	60	50	40	30	20	10	0

 $\underset{\text { P } \times 3010}{\text { Ap } 3017}$

$\mathrm{F}=\mathrm{e} 23-2017$
$\mathrm{PK}-286$

F్ల్రీ．		而代寺寺
¢ifo	\％్ల్లल	
¢	－5\％	

Dec01-2017
$\mathrm{Pk}-277$

$\underset{\text { PK-278 }}{\substack{\text { Aug } 22-2017 ~}}$

 Aug22-2017
PK-278 PK-278

NOE of $\mathbf{1 2}$

Results for Cell Viability testing of Compounds 12-22 and 23a/b-33a/b at $25 \mu \mathrm{M}$ concentration in MCF-7 Cell line

Results for Cell Viability testing of Compounds $\mathbf{1 2 - 2 2}$ and $\mathbf{2 3 a} / \mathrm{b}-\mathbf{3 3 a} / \mathrm{b}$ at $\mathbf{2 5} \boldsymbol{\mu} \mathrm{M}$

[^0]: ${ }_{\text {PK-265 }}^{30016-2017}$

