Supporting Information for

Ru(II)-catalyzed spirocyclization of aryl *N*-sulfonyl ketimines with aryl isocyanates through an aromatic C-H bond activation

K. Nagarjuna Reddy,^{a,c} U. Subhadra,^a B. Sridhar,^b B.V. Subba Reddy*a

^aCentre for Semiochemicals, ^bLaboratory of X-ray Crystallography, CSIR-Indian Institute of Chemical Technology, Hyderabad –500 007, India.

^cAcademy of Scientific and Innovative Research (AcSIR), New Delhi - 110025, India.

E-mail: basireddy@iict.res.in; Fax: 91-40-27160512.

Table of Contents

1. Characterization data of products (3a-q)	S2-6
2. NMR spectra of products (3a-q)	S7-23
3. X-ray crystallography	S24

Experimental section

1. General remarks

¹HNMR spectra were recorded at 300, 400 and 500 MHz and ¹³C NMR at 126, 75 MHz. For 1H NMR, tetramethylsilane (TMS) was used as internal standard ($\delta = 0$) and the values are reported as follows: chemical shift, integration, multiplicity (s = singlet, d = doublet, t= triplet, q =quartet, m = multiplet), and the coupling constants in Hz. For ¹³C NMR, CDCl₃ ($\delta = 77.00$) was used as internal standard and spectra were obtained with complete proton decoupling. HRMS data were obtained using ESI ionization. Melting points were measured on micro melting point apparatus.

2. Typical procedure for the synthesis of spiroisoindolinone-benzosultams:

To an oven-dried sealed tube charged with 3-phenylbenzo[*d*]isthiazole1,1-dioxide (1a) (0.1 mmol%), [Ru(p-cymene)Cl₂]₂ (5 mol%), aryl isocyanate (2a) (0.1 mmol) was added AgSbF₆ (20 mol%) in DCE (2 mL) under N₂ atm at room temperature. The reaction mixture was allowed to stir at 120 °C for 16h and cooled to room temperature. The reaction mixture was diluted with dichloromethane and concentrated in vacuum. The residue was purified by flash column chromatography (n-hexane/EtOAc = 3:1) to afford the product **3a**.

3. Characterization data for the products (3a-q):

2'-(3,5-Bis(trifluoromethyl)phenyl)-6'-methoxy-2H-spiro[benzo[d]isothiazole-3,1'-

isoindolin]-3'-one-1,1-dioxide (3a): White solid, yield 85%, mp 225-227 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.86 – 7.81 (m, 3H), 7.64 (s, 1H), 7.63 – 7.57 (m, 2H), 7.56 – 7.52 (m, 1H), 7.10 (d, J = 8.4 Hz, 1H), 7.00 (d, J = 7.5 Hz, 1H), 6.94 (d, J = 8.4 Hz, 1H), 6.02 (s, 1H), 4.00 (s, 3H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 165.4, 157.4, 147.1, 136.2, 136.1, 135.9, 135.2, 134.3, 132.3, 132.0, 131.7, 127.3, 123.8, 121.8, 121.1, 115.8, 114.4, 113.0, 80.8, 56.0 ppm. HRMS (*m/z*) calcd for C₂₃H₁₅O₄N₂F₆S [M+H]⁺ 529.0651, found 529.0672.

6'-Methoxy-2'-tosyl-2H-spiro[benzo[d]isothiazole-3,1'-isoindolin]-3'-one-1,1-dioxide (**3b):** White solid, yield 88%, mp 265-267 °C. ¹H NMR (300 MHz, CDCl₃+DMSO) δ 9.05 (s, 1H), 8.04 (d, *J* = 8.2 Hz, 2H), 7.94 (d, *J* = 7.9 Hz, 1H), 7.76 – 7.64 (m, 3H), 7.34 (d, *J* = 8.1 Hz, 2H), 7.22 (d, *J* = 7.2 Hz, 1H), 7.05 (dd, *J* = 8.5, 2.1 Hz, 1H), 6.70 (s, 1H), 3.77 (s, 3H), 2.43 (s, 3H) ppm. ¹³C NMR (101 MHz, CDCl₃+DMSO) δ 164.7, 163.9, 147.9, 144.32, 136.5, 135.5, 134.9, 133.2, 130.3, 128.6, 128.1, 125.3, 123.0, 120.4, 118.7, 117.1, 106.3, 80.3, 55.3, 20.9 ppm. HRMS (*m/z*) calcd for C₂₂H₁₈O₆N₂NaS₂ [M+Na]⁺ 493.0498, found 493.0514.

6'-Methoxy-2'-(4-nitrophenyl)-2H-spiro[benzo[d]isothiazole-3,1'-isoindolin]-3'-one-1,1-

dioxide (3c): White solid, yield 82%, mp 210-211 °C. ¹H NMR (300 MHz, CDCl₃+DMSO) δ 9.41 (s, 1H), 8.10 (d, J = 9.1 Hz, 2H), 7.87 (dd, J = 11.2, 8.4 Hz, 2H), 7.64 (dd, J = 11.1, 4.2 Hz, 4H), 7.14 (dd, J = 13.5, 5.0 Hz, 2H), 6.89 (d, J = 1.9 Hz, 1H), 3.83 (s, 3H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 165.6, 163.7, 147.1, 144.5, 140.7, 135.3, 135.13, 133.3, 130.5, 125.4, 124.8, 123.2, 123.0, 120.5, 116.4, 106.3, 80.3, 55.0 ppm. HRMS (*m/z*) calcd for C₂₁H₁₆O₆N₃S [M+H]⁺ 438.0754, found 438.0769.

2'-(4-Chlorophenyl)-6'-methoxy-2H-spiro[benzo[d]isothiazole-3,1'-isoindolin]-3'-one-

1,1-dioxide (3d): White solid, yield 80%, mp 200-202 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.88 (s, 1H), 7.81 (dd, J = 6.8, 2.5 Hz, 1H), 7.63 – 7.58 (m, 2H), 7.23 (d, J = 1.7 Hz, 4H), 7.15 – 7.13 (m, 1H), 7.09 (dd, J = 8.5, 2.2 Hz, 1H), 6.88 (d, J = 2.1 Hz, 1H), 5.53 (s, 2H), 3.81 (s, 6H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 167.0, 164.7, 147.2, 135.9, 135.8, 134.3, 133.6, 132.9, 131.4, 129.3, 128.8, 126.0, 124.3, 122.1, 121.6, 117.7, 106.7, 81.3, 56.0 ppm. HRMS (*m/z*) calcd for C₂₁H₁₅O₄N₂ClNaS [M+Na]⁺ 449.0333, found 449.0351.

2'-(4-Nitrophenyl)-2H-spiro[benzo[d]isothiazole-3,1'-isoindolin]-3'-one-1,1-dioxide (3e): White solid, yield 78%, mp 275-277 °C. ¹H NMR (300 MHz, CDCl₃+DMSO) δ 9.40 (s, 0.7H), 8.13 (d, *J* = 9.1 Hz, 2H), 7.99 (dd, *J* = 5.6, 2.7 Hz, 1H), 7.87 – 7.82 (m, 1H), 7.68 – 7.57 (m, 6H), 7.48 – 7.44 (m, 1H), 7.18 – 7.12 (m, 1H), 5.37 (s, 0.2H) ppm. ¹³C NMR (101 MHz, CDCl₃+DMSO) δ 166.2, 145.1, 144.9, 140.7, 135.8, 135.2, 133.5, 130.8, 130.0, 128.7, 126.2, 123.5, 123.3, 122.3, 120.8, 117.3, 81.1 ppm. HRMS (*m/z*) calcd for C₂₀H₁₄O₅N₃S [M+H]⁺ 408.0648, found 408.0646.

5'-Methyl-2'-tosyl-2*H***-spiro[benzo[d]isothiazole-3,1'-isoindolin]-3'-one-1,1-dioxide (3f):** White solid, yield 86%, mp 220-222 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.12 (d, *J* = 8.4 Hz, 2H), 7.98 (dd, *J* = 7.0, 1.2 Hz, 1H), 7.87 (d, *J* = 7.2 Hz, 1H), 7.75 – 7.55 (m, 4H), 7.34 (dd, *J* = 7.8, 4.3 Hz, 3H), 7.26 – 7.23 (m, 1H), 3.70 (s, 1H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 171.6, 150.5, 150.3, 146.0, 141.1, 140.6, 138.9, 136.2, 135.3, 134.1, 131.6, 128.9, 128.6, 127.7, 126.2, 122.6, 86.5 ppm. HRMS (*m/z*) calcd for C₂₁H₁₆O₅N₂NaS₂ [M+Na]⁺ 463.0392, found 463.0399.

2'-(4-Chlorophenyl)-2H-spiro[benzo[d]isothiazole-3,1'-isoindolin]-3'-one-1,1-dioxide

(3g): White solid, yield 78%, mp 262-264 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.98 (ddd, J = 3.8, 2.3, 0.6 Hz, 1H), 7.83 – 7.80 (m, 1H), 7.65 – 7.58 (m, 4H), 7.46 – 7.44 (m, 1H), 7.28 – 7.23 (m, 4H), 7.13 – 7.11 (m, 1H), 5.30 (s, 1H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 166.7, 144.8, 135.9, 135.8, 134.2, 134.1, 133.9, 132.6, 131.4, 131.0, 130.0, 129.4, 128.9, 124.5,

124.3, 122.5, 121.7, 81.7 ppm. HRMS (m/z) calcd for C₂₀H₁₄O₃N₂ClS[M+H]⁺ 397.0408, found 397.0400.

5'-Chloro-2'-tosyl-2*H***-spiro[benzo[d]isothiazole-3,1'-isoindolin]-3'-one-1,1-dioxide (3h):** White solid, yield 75%, mp 280-282 °C. ¹H NMR (300 MHz, CDCl₃+DMSO) δ 9.14 (s, 1H), 8.04 (d, *J* = 8.3 Hz, 2H), 7.95 (d, *J* = 7.4 Hz, 1H), 7.78 – 7.64 (m, 2H), 7.61 – 7.58 (m, 1H), 7.35 (d, *J* = 8.2 Hz, 2H), 7.24 (t, *J* = 7.1 Hz, 2H), 2.44 (s, 3H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 163.6, 145.2, 144.0, 136.7, 136.4, 135.7, 135.6, 135.1, 133.8, 131.1, 129.2, 128.8, 124.5, 124.0, 123.5, 121.1, 21.5 ppm. HRMS (*m/z*) calcd for C₂₁H₁₅O₅N₂ClNaS₂[M+Na]⁺ 497.0003, found 497.0020.

2'-(4-Chlorophenyl)-5'-methoxy-2H-spiro[benzo[d]isothiazole-3,1'-isoindolin]-3'-one-

1,1-dioxide (3i): White solid, yield 82%, mp 190-191 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.79 (dd, J = 6.0, 2.8 Hz, 1H), 7.60 – 7.58 (m, 2H), 7.41 (d, J = 2.4 Hz, 1H), 7.31 (d, J = 8.4 Hz, 1H), 7.24 (d, J = 7.2 Hz, 4H), 7.15 – 7.10 (m, 2H), 5.53 (s, 1H), 3.90 (s, 3H) ppm. ¹³C NMR (75 MHz, CDCl₃+DMSO) δ 166.1, 160.9, 136.7, 135. 7, 133.0, 132.7, 132.5, 131.0, 130.4, 128.8, 128.3, 123.3, 120.4, 106.2, 80.8, 55.2 ppm. HRMS (*m/z*) calcd for C₂₁H₁₅O₄N₂ClNaS [M+Na]⁺ 449.0333, found 449.0351.

5'-Methoxy-2'-(4-nitrophenyl)-2H-spiro[benzo[d]isothiazole-3,1'-isoindolin]-3'-one-1,1dioxide (3j): White solid, yield 84%, mp 210-211 °C. ¹H NMR (300 MHz, CDCl₃+DMSO) δ 9.17 (s, 1H), 8.12 (d, *J* = 9.1 Hz, 2H), 7.83 (dd, *J* = 6.4, 2.1 Hz, 1H), 7.66 – 7.57 (m, 4H), 7.44 (d, *J* = 2.3 Hz, 1H), 7.34 (d, *J* = 8.5 Hz, 1H), 7.15 (ddd, *J* = 8.3, 7.3, 2.0 Hz, 2H), 3.92 (s, 3H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 166.7, 161.59, 145.6, 141.2, 137.3, 136.2, 136.1, 133.9, 131.2, 130.8, 126.6, 124.0, 123.9, 123.7, 121.7, 121.3, 106.8, 81.4, 55.8 ppm. HRMS (*m/z*) calcd for C₂₁H₁₆O₆N₃S [M+H]⁺ 438.07543, found 438.0769.

2'-(3,5-Bis(trifluoromethyl)phenyl)-5'-methoxy-2H-spiro[benzo[d]isothiazole-3,1'isoindolin]-3'-one-1,1-dioxide (3k): White solid, yield 86%, mp 230-232 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.83 – 7.78 (m, 3H), 7.70 (s, 1H), 7.64 – 7.60 (m, 2H), 7.41 (s, 1H), 7.33 (d, J = 8.5 Hz, 1H), 7.16 (d, J = 8.5 Hz, 1H), 7.13 – 7.09 (m, 1H), 5.85 (s, 1H), 3.90 (s, 3H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 166.60 162.2, 136.3, 136.1, 136.0, 135.6, 134.5, 132.5, 132.2, 131.7, 131.0, 127.1, 123.9, 123.8, 123.7, 122.4, 121.8, 121.6, 121.3, 107.5, 81.6, 56.0 ppm. HRMS (*m/z*) calcd for C₂₃H₁₅O₄N₂F₆S [M+H]⁺ 529.0651, found 529.0672.

2'-(4-Chlorophenyl)-5'-methyl-2H-spiro[benzo[d]isothiazole-3,1'-isoindolin]-3'-one-1,1dioxide (3l): White solid, yield 80%, mp 190-192 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.81 – 7.78 (m, 1H), 7.72 (s, 1H), 7.61 – 7.56 (m, 2H), 7.42 (d, *J* = 7.9 Hz, 1H), 7.31 (d, *J* = 7.8 Hz, 1H), 7.24 – 7.20 (m, 4H), 7.11 – 7.08 (m, 1H), 5.69 (s, 1H), 2.47 (s, 3H) ppm. ¹³C NMR (126) MHz, CDCl₃) δ 167.0, 142.1, 141.5, 136.0, 135.9, 134.9, 134.2, 133.8, 132.7, 131.3, 130.1, 129.3, 128.9, 124.6, 124.2, 122.3, 121.6, 81.7, 21.5 ppm. HRMS (*m/z*) calcd for C₂₁H₁₆O₃N₂ClS [M+H]⁺ 411.0564, found 411.0581.

5'-Methyl-2'-tosyl-2H-spiro[benzo[d]isothiazole-3,1'-isoindolin]-3'-one-1,1-dioxide (3m): White solid, yield 88%, mp 120-122 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.11 (d, *J* = 8.3 Hz, 2H), 7.96 (d, *J* = 7.4 Hz, 1H), 7.68 (m, 3H), 7.42 (d, *J* = 7.9 Hz, 1H), 7.32 (d, *J* = 8.2 Hz, 2H), 7.22 (dd, *J* = 11.9, 7.6 Hz, 2H), 5.19 (s, 1H), 2.42 (d, *J* = 2.8 Hz, 6H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 164.9, 145.5, 142.8, 142.0, 137.2, 136.7, 135.9, 134.93, 134.5, 131.2, 129.7, 129.5, 129.0, 127.6, 126.4, 124.9, 123.9, 122.5, 121.5, 81.3, 77.3, 77.0, 76.7, 21.7, 21.4 ppm. HRMS (*m/z*) calcd for C₂₂H₁₈O₅N₂NaS₂ [M+Na]⁺ 477.0549, found 477.0563.

3'-Oxo-N,2-ditosyl-1,1'-spirobi[isoindoline]-7-carboxamide (3n): White solid, yield 88%, mp 140-141 °C. ¹H NMR (400 MHz, CDCl₃) δ 11.28 (s, 1H), 8.07 (d, *J* = 7.5 Hz, 1H), 7.88 – 7.82 (m, 3H), 7.66 (d, *J* = 7.5 Hz, 1H), 7.63 – 7.57 (m, 3H), 7.53 – 7.46 (m, 2H), 7.24 (s, 1H), 7.13 (d, *J* = 8.1 Hz, 2H), 6.97 (d, *J* = 7.6 Hz, 1H), 6.88 – 6.85 (m, 1H), 5.29 (s, 1H), 2.39 (d, *J* = 10.6 Hz, 6H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 169.0, 165.0, 145.5, 144.8, 143.3, 143.0, 135.7, 135.0, 134.9, 131.2, 130.6, 129.6, 129.4, 129.0, 128.7, 128.5, 128.2, 125.6, 125.2, 122.6, 121.0, 82.7, 21.7, 21.7 ppm. HRMS (*m/z*) calcd for C₃₀H₂₄O₇N₃S₂ [M+H]⁺ 602.1050, found 602.1062.

5'-Methyl-2'-(4-nitrophenyl)-*2H*-spiro[benzo[d]isothiazole-3,1'-isoindolin]-3'-one-1,1dioxide (30): White solid, yield 80%, mp 230-232 °C. ¹H NMR (300 MHz, CDCl₃+DMSO) δ 8.11 (d, *J* = 9.0 Hz, 2H), 7.83 (d, *J* = 6.8 Hz, 1H), 7.78 (s, 1H), 7.62 (dd, *J* = 11.0, 7.8 Hz, 4H), 7.47 (d, *J* = 7.8 Hz, 1H), 7.33 (d, *J* = 7.8 Hz, 1H), 7.13 (d, *J* = 7.3 Hz, 1H), 2.51 (s, 3H) ppm. ¹³C NMR (101 MHz, CDCL₃+DMSO) δ 171.7, 150.4, 147.6, 146.2, 145.8, 141.1, 140.9, 139.8, 138.8, 136.1, 134.2, 131.5, 128.9, 128.6, 127.4, 126.1, 86.4, 26.2 ppm. HRMS (*m/z*) calcd for C₂₁H₁₆O₅N₃S [M+H]⁺ 422.0805, found 422.0808.

6'-Methyl-2'-tosyl-2*H***-spiro[benzo[d]isothiazole-3,1'-isoindolin]-3'-one-1,1-dioxide (3p):** White solid, yield 85%, mp 125-127 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.10 (d, *J* = 8.4 Hz, 2H), 7.97 (d, *J* = 8.2 Hz, 1H), 7.75 – 7.65 (m, 3H), 7.34 (dd, *J* = 15.8, 8.0 Hz, 3H), 7.24 (d, *J* = 6.0 Hz, 1H), 7.10 (s, 1H), 5.19 (s, 1H), 2.42 (s, 3H), 2.37 (s, 3H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 164.6, 147.5, 145.8, 145.4, 137.2, 136.0, 134.9, 134.5, 132.3, 131.2, 129.5, 129.0, 124.9, 124.8, 123.9, 122.9, 121.6, 81.2, 22.1, 21.7 ppm. HRMS (*m/z*) calcd for C₂₂H₁₈O₅N₂NaS₂ [M+Na]⁺ 477.0549, found 477.0563.

5'-Methoxy-2'-tosyl-2*H*-spiro[benzo[d]isothiazole-3,1'-isoindolin]-3'-one-1,1-dioxide (3q): White solid, yield 90%, mp 140-141 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.07 (d, *J* = 8.4 Hz, 2H), 7.93 (d, J = 7.8 Hz, 1H), 7.72 – 7.63 (m, 2H), 7.31 (d, J = 8.1 Hz, 2H), 7.26 – 7.18 (m, 3H), 7.11 (dd, J = 8.6, 2.4 Hz, 1H), 3.82 (s, 3H), 2.40 (s, 3H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 165.1, 161.9, 145.4, 137.0, 135.9, 135.0, 134.4, 131.2, 129.5, 129.3, 128.9, 124.1, 123.8, 123.5, 121.5, 107.4, 56.0, 21.7 ppm. HRMS (*m/z*) calcd for C₂₂H₁₈O₆N₂NaS₂ [M+Na]⁺ 493.0498, found 493.0514.

¹³C NMR (101 MHz, CDCl₃) spectrum of compound (3a)

¹H NMR (300 MHz,CDCl₃ + DMSO) spectrum of compound (3b)

¹³C NMR (101 MHz, CDCl₃+DMSO) spectrum of compound (3b)

¹H NMR (300 MHz,CDCl₃ + DMSO) spectrum of compound (3c)

¹³C NMR (101 MHz, CDCl₃ + DMSO) spectrum of compound (3c)

¹H NMR (400 MHz,CDCl₃) spectrum of compound (3d)

¹³C NMR (126 MHz, CDCl₃) spectrum of compound (3d)

¹H NMR (300 MHz, CDCl₃ + DMSO) spectrum of compound (3e)

¹³C NMR (101 MHz, CDCl₃ + DMSO) spectrum of compound (3e)

¹H NMR (400 MHz,CDCl₃ + DMSO) spectrum of compound (3f)

¹³C NMR (101 MHz, CDCl₃ + DMSO) spectrum of compound (3f)

¹H NMR (500 MHz,CDCl₃) spectrum of compound (3g)

¹³C NMR (101 MHz, CDCl₃) spectrum of compound (3g)

¹H NMR (300 MHz,CDCl₃ + DMSO) spectrum of compound (3h)

¹³C NMR (126 MHz, CDCl₃ + DMSO) spectrum of compound (3h)

¹H NMR (500 MHz,CDCl₃) spectrum of compound (3i)

¹³C NMR (75 MHz, CDCl₃ + DMSO) spectrum of compound (3i)

¹H NMR (300 MHz,CDCl₃ + DMSO) spectrum of compound (3j)

¹³C NMR (101 MHz, CDCl₃ + DMSO) spectrum of compound (3j)

¹H NMR (400 MHz,CDCl₃) spectrum of compound (3k)

¹H NMR (500 MHz,CDCl₃) spectrum of compound (3l)

¹³C NMR (126 MHz, CDCl₃) spectrum of compound (3l)

¹H NMR (400 MHz,CDCl₃) spectrum of compound (3m)

¹³C NMR (101 MHz, CDCl₃) spectrum of compound (3m)

¹H NMR (400 MHz,CDCl₃) spectrum of compound (3n)

¹³C NMR (126 MHz, CDCl₃) spectrum of compound (3n)

¹H NMR (300 MHz, CDCl₃ + DMSO) spectrum of compound (30)

¹³C NMR (101 MHz, CDCl₃ + DMSO) spectrum of compound (30)

¹³C NMR (75 MHz, CDCl₃) spectrum of compound (3p)

¹H NMR (400 MHz, CDCl3) spectrum of compound (3q)

¹³C NMR (126 MHz, CDCl₃) spectrum of compound (3q)

3. X-ray Crystallography

X-ray data for the compound KA238 was collected at room temperature on a Bruker D8 QUEST instrument with an I μ S Mo microsource ($\lambda = 0.7107$ A) and a PHOTON-100 detector. The raw data frames were reduced and corrected for absorption effects using the Bruker Apex 3 software suite programs [1]. The structure was solved using intrinsic phasing method [2] and further refined with the SHELXL [2] program and expanded using Fourier techniques. Anisotropic displacement parameters were included for all non-hydrogen atoms. All C bound H atoms were positioned geometrically and treated as riding on their parent C atoms [C-H = 0.93-0.97 Å, and U_{iso}(H) = $1.5U_{eq}(C)$ for methyl H or $1.2U_{eq}(C)$ for other H atoms].

Crystal Data for **3c**: $C_{21}H_{15}N_3O_6S$ (*M*=437.42 g/mol): monoclinic, space group P2₁ (no. 4), *a* = 8.26140(10) Å, *b* = 11.3690(2) Å, *c* = 10.8661(2) Å, *β* = 106.2970(4)°, *V* = 979.58(3) Å³, *Z* = 2, *T* = 294.15 K, μ (MoK α) = 0.212 mm⁻¹, *Dcalc* = 1.483 g/cm³, 28348 reflections measured (5.138° ≤ 2 Θ ≤ 61.14°), 5995 unique (R_{int} = 0.0350, R_{sigma} = 0.0283) which were used in all calculations. The final R_1 was 0.0363 (I > 2 σ (I)) and wR_2 was 0.1015 (all data). CCDC 1578857 contains supplementary Crystallographic data for the structure. These data can be obtained free of charge at www.ccdc.cam.ac.uk/conts/retrieving.html [or from the Cambridge Crystallographic Data Centre (CCDC), 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44(0) 1223 336 033; email: <u>deposit@ccdc.cam.ac.uk</u>].

- Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.
- 2. Sheldrick G. M. (2015) Acta Crystallogr C71: 3-8.