Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2017

Electronic Supplementary Information

Metal-free oxidative ring contraction of benzodiazepinones: an entry to

quinoxalinones

Hasan Mtiraoui,^{a,†} Kevin Renault,^{b,†} Morgane Sanselme,^c Moncef Msaddek,^{a,*} Pierre-Yves Renard,^b Cyrille

Sabot^{*,b}

 ^a Université Monastir, Laboratory of Heterocyclic Chemistry Natural Products and Reactivity/CHPNR, Department of Chemistry, Faculty of Science of Monastir, 5000 Monastir (Tunisia)
^b Normandie Univ, CNRS, UNIROUEN, INSA Rouen, COBRA (UMR 6014), 76100 Rouen (France)
^c Normandie Univ, France; UNIROUEN, Laboratoire SMS EA3233, 1 rue Tesniere, France, F-76821 Mont Saint Aignan (France)

Table of contents

I. Copies of ¹ H and ¹³ C NMR for compounds 1 , 2 , 3 , 5 , 6 and 8	S2
II. 2D-NMR experiments for compounds 2h-j	S23
III. ¹ H NMR study of the reaction between quinoxalinone 1a and NBS	S26
IV. Spectroscopic data for compounds 5 and 8	S27
V. Crystallographic data for compound 2a	S29

I. Copies of ¹H and ¹³C NMR for compounds 1, 2, 3, 5, 6 and 8

S6

S17

II. 2D-NMR experiments for compounds 2h-j

III. ¹H NMR study of the reaction between quinoxalinone 1a and NBS

Normalized absorption (blue), emission (red), and excitation spectra (green)of quinoxalinone **5** in THF, at 25 °C.

Normalized absorption (blue), emission (red), and excitation spectra (green)of quinoxalinone **5** in PBS 7.4, at 25 °C.

Normalized absorption (blue), emission (red), and excitation spectra (green) of cholesterol conjugate **8** in THF, at 25 $^{\circ}$ C.

V. Crystallographic data for compound 2a

The crystal structure of 2a $[C_{15}H_{10}N_2O_2]$ has been determined from single crystal X-Ray diffraction. The chosen crystal was stuck on a glass fibre and mounted on the full three-circle goniometer of a diffractometer with a CCD area detector. Three sets of exposures (a total of 1800 frames) were recorded, corresponding to three ω scans (steps of 0.3°), for three different values of ϕ . The details of data collection are given in annexe.

The cell parameters and the orientation matrix of the crystal were preliminary determined by using SMART Software¹. Data integration and global cell refinement were performed with SAINT Software². Intensities were corrected for Lorentz, polarisation, decay and absorption effects (SAINT and SADABS Softwares) and reduced to FO2. The program package WinGX3³ was used for space group determination, structure solution and refinement.

DATA REFINEMENT

The non-standard space group $P2_1/n$ (n°14) was determined from systematic extinctions and relative Fo^2 of equivalent reflections. The structure was solved by direct methods⁴. Anisotropic displacement parameters were refined for all non-hydrogen atoms. Every Hydrogen atoms were located from subsequent difference Fourier syntheses and placed with geometrical constraints (SHELXL⁵). The final cycle of full-matrix least-square refinement on F^2 was based on 2407 observed reflections and 172 variable parameters and converged with unweighted and weighted agreement factors of:

R1 = 0.0417, wR2 = 0.1096 for 2186 reflections with I>2 σ I and R1 = 0.0457, wR2 = 0.1131 for all data.

¹ SMART for WNT/2000 V5.622 (2001), Smart software reference manual, Bruker Advanced X Ray Solutions, Inc., Madison, Wisconsin, USA.

² SAINT+ V6.02 (1999), Saint software reference manual, Bruker Advanced X Ray Solutions, Inc., Madison, Wisconsin, USA.

³ WinGX: Version 1.70.01: An integrated system of Windows Programs for the solution, refinement and analysis of Single Crystal X-Ray Diffraction Data, By LouisJ. Farrugia, Dept. of chemistry, University of Glasgow.

L. J. Farrugia (1999) J. Appl. Cryst. 32, 837-838.

⁴ Include in WinGX suite : SIR 92: A. Altomare, G. Cascarano, & A. Gualardi (1993) J. Appl. Cryst. 26, 343-350; SHELXS-97: Sheldrick, G. M., (1990) Acta cryst, A46, 467.

⁵ Include in WinGX suite: SHELXL-97 – a program for crystal structure refinement, G. M. .Sheldrick, University of Goettingen, Germany, 1997, release 97-2.

ANNEXE: CRYSTALLOGRAPHIC DATA

	х	у	z	U(eq)
C(1)	10816(1)	1728(2)	7013(1)	33(1)
C(2)	11538(1)	170(3)	7454(1)	42(1)
C(3)	12031(1)	608(3)	8348(1)	48(1)
C(4)	11820(1)	2591(3)	8812(1)	50(1)
C(5)	11096(1)	4099(3)	8391(1)	46(1)
C(6)	10571(1)	3676(2)	7484(1)	35(1)
C(7)	9355(1)	4720(2)	6238(1)	35(1)
C(8)	9616(1)	2871(2)	5653(1)	34(1)
C(9)	8497(1)	6269(2)	5814(1)	37(1)
C(10)	7570(1)	5693(2)	6011(1)	35(1)
C(11)	7439(1)	3664(3)	6491(1)	45(1)
C(12)	6557(1)	3218(3)	6658(1)	57(1)
C(13)	5815(1)	4777(4)	6357(1)	63(1)
C(14)	5935(1)	6787(4)	5872(1)	66(1)
C(15)	6808(1)	7242(3)	5701(1)	49(1)
N(1)	9800(1)	5129(2)	7082(1)	39(1)
N(2)	10319(1)	1401(2)	6108(1)	37(1)
O(1)	8585(1)	7934(2)	5336(1)	64(1)
O(2)	9209(1)	2674(2)	4831(1)	42(1)

Table 1a: Atomic coordinates (x104) and equivalent isotropic displacement parameters ($Å^2 \times 10^3$).

U(eq) is defined as one third of the trace of the orthogonalized Uij tensor

Table 1b: Hydrogen coordinates (x104) and equivalent isotropic displacement parameters (Å2 x 103).

U(eq) is defined as one third of the trace of the orthogonalized Uij tensor

	х	у	Z	U(eq)
H(2)	11686	-1156	7147	50
H(3)	12511	-435	8646	57
H(4)	12172	2894	9411	60
H(5)	10951	5410	8708	55
H(11)	7943	2604	6700	54
H(12)	6470	1853	6977	68
H(13)	5228	4480	6479	75
H(14)	5426	7833	5660	79
H(15)	6887	8600	5374	59
H(2A)	10465	197	5818	44

Table 2: Bond lengths (Å)

C(1)-N(2)	1.3812(16)
C(1)-C(2)	1.3916(19)
C(1)-C(6)	1.3977(19)
C(2)-C(3)	1.373(2)
C(2)-H(2)	0.93
C(3)-C(4)	1.390(2)
C(3)-H(3)	0.93
C(4)-C(5)	1.367(2)
C(4)-H(4)	0.93
C(5)-C(6)	1.4023(18)
C(5)-H(5)	0.93
C(6)-N(1)	1.3870(17)
C(7)-N(1)	1.2892(16)
C(7)-C(8)	1.4730(18)
C(7)-C(9)	1.5130(18)
C(8)-O(2)	1.2319(15)
C(8)-N(2)	1.3496(17)
C(9)-O(1)	1.2072(17)
C(9)-C(10)	1.4822(18)
C(10)-C(15)	1.3860(19)
C(10)-C(11)	1.3876(19)
C(11)-C(12)	1.386(2)
C(11)-H(11)	0.93
C(12)-C(13)	1.367(3)
C(12)-H(12)	0.93
C(13)-C(14)	1.379(3)
C(13)-H(13)	0.93
C(14)-C(15)	1.376(2)
C(14)-H(14)	0.93
C(15)-H(15)	0.93
N(2)-H(2A)	0.86

Table 3: Angles (°)

N(2)-C(1)-C(2)	121.53(12)	O(1)-C(9)-C(7)	119.69(12)
N(2)-C(1)-C(6)	118.07(12)	C(10)-C(9)-C(7)	118.34(11)
C(2)-C(1)-C(6)	120.40(12)	C(15)-C(10)-C(11)	119.12(13)
C(3)-C(2)-C(1)	119.36(13)	C(15)-C(10)-C(9)	118.49(12)
C(3)-C(2)-H(2)	120.3	C(11)-C(10)-C(9)	122.39(12)
C(1)-C(2)-H(2)	120.3	C(12)-C(11)-C(10)	119.95(14)
C(2)-C(3)-C(4)	120.81(14)	C(12)-C(11)-H(11)	120
C(2)-C(3)-H(3)	119.6	C(10)-C(11)-H(11)	120
C(4)-C(3)-H(3)	119.6	C(13)-C(12)-C(11)	120.26(16)
C(5)-C(4)-C(3)	120.19(13)	C(13)-C(12)-H(12)	119.9
C(5)-C(4)-H(4)	119.9	C(11)-C(12)-H(12)	119.9
C(3)-C(4)-H(4)	119.9	C(12)-C(13)-C(14)	120.25(15)
C(4)-C(5)-C(6)	120.25(14)	C(12)-C(13)-H(13)	119.9
C(4)-C(5)-H(5)	119.9	C(14)-C(13)-H(13)	119.9
C(6)-C(5)-H(5)	119.9	C(15)-C(14)-C(13)	119.89(16)
N(1)-C(6)-C(1)	121.22(11)	C(15)-C(14)-H(14)	120.1
N(1)-C(6)-C(5)	119.82(12)	C(13)-C(14)-H(14)	120.1
C(1)-C(6)-C(5)	118.91(12)	C(14)-C(15)-C(10)	120.53(15)
N(1)-C(7)-C(8)	125.20(12)	C(14)-C(15)-H(15)	119.7
N(1)-C(7)-C(9)	117.39(12)	C(10)-C(15)-H(15)	119.7
C(8)-C(7)-C(9)	117.41(11)	C(7)-N(1)-C(6)	117.78(11)
O(2)-C(8)-N(2)	123.79(12)	C(8)-N(2)-C(1)	123.46(11)
O(2)-C(8)-C(7)	122.46(12)	C(8)-N(2)-H(2A)	118.3
N(2)-C(8)-C(7)	113.74(11)	C(1)-N(2)-H(2A)	118.3
O(1)-C(9)-C(10)	121.96(12)		

Table 4: Anisotropic displacement parameters ($Å^2 \times 10^3$) The anisotropic displacement factor exponent takes the form: -2 π^2 [$h^2 a^{*2} U11 + ... + 2 h k a^* b^* U12$]

-						
	U11	U22	U33	U23	U13	U12
C(1)	31(1)	37(1)	33(1)	-2(1)	8(1)	-2(1)
C(2)	39(1)	42(1)	44(1)	-2(1)	9(1)	5(1)
C(3)	40(1)	53(1)	45(1)	6(1)	3(1)	7(1)
C(4)	48(1)	61(1)	35(1)	-3(1)	0(1)	0(1)
C(5)	50(1)	49(1)	36(1)	-8(1)	8(1)	2(1)
C(6)	34(1)	38(1)	34(1)	-2(1)	9(1)	0(1)
C(7)	33(1)	35(1)	36(1)	0(1)	10(1)	0(1)
C(8)	31(1)	34(1)	35(1)	-2(1)	7(1)	-3(1)
C(9)	39(1)	35(1)	37(1)	1(1)	10(1)	2(1)
C(10)	35(1)	36(1)	32(1)	-2(1)	7(1)	0(1)
C(11)	44(1)	43(1)	47(1)	7(1)	9(1)	1(1)
C(12)	56(1)	59(1)	58(1)	11(1)	20(1)	-12(1)
C(13)	42(1)	76(1)	75(1)	-1(1)	24(1)	-7(1)
C(14)	41(1)	69(1)	90(1)	13(1)	21(1)	13(1)
C(15)	43(1)	47(1)	58(1)	12(1)	14(1)	6(1)
N(1)	40(1)	42(1)	37(1)	-5(1)	10(1)	5(1)
N(2)	38(1)	36(1)	34(1)	-7(1)	7(1)	4(1)
O(1)	49(1)	61(1)	88(1)	34(1)	27(1)	9(1)
O(2)	45(1)	42(1)	34(1)	-5(1)	1(1)	2(1)

Table 5: Torsion angles (°)

N(2)-C(1)-C(2)-C(3)	178.16(13)
C(6)-C(1)-C(2)-C(3)	-2.2(2)
C(1)-C(2)-C(3)-C(4)	-0.4(2)
C(2)-C(3)-C(4)-C(5)	2.0(2)
C(3)-C(4)-C(5)-C(6)	-1.0(2)
N(2)-C(1)-C(6)-N(1)	5.28(19)
C(2)-C(1)-C(6)-N(1)	-174.38(12)
N(2)-C(1)-C(6)-C(5)	-177.20(12)
C(2)-C(1)-C(6)-C(5)	3.1(2)
C(4)-C(5)-C(6)-N(1)	176.02(14)
C(4)-C(5)-C(6)-C(1)	-1.5(2)
N(1)-C(7)-C(8)-O(2)	-174.35(13)
C(9)-C(7)-C(8)-O(2)	5.41(19)
N(1)-C(7)-C(8)-N(2)	7.11(19)
C(9)-C(7)-C(8)-N(2)	-173.13(11)
N(1)-C(7)-C(9)-O(1)	99.06(17)
C(8)-C(7)-C(9)-O(1)	-80.72(17)
N(1)-C(7)-C(9)-C(10)	-80.36(16)
C(8)-C(7)-C(9)-C(10)	99.86(14)
O(1)-C(9)-C(10)-C(15)	-5.8(2)
C(7)-C(9)-C(10)-C(15)	173.64(13)
O(1)-C(9)-C(10)-C(11)	174.07(15)
C(7)-C(9)-C(10)-C(11)	-6.53(19)
C(15)-C(10)-C(11)-C(12)	-0.4(2)
C(9)-C(10)-C(11)-C(12)	179.77(14)
C(10)-C(11)-C(12)-C(13)	-0.3(3)
C(11)-C(12)-C(13)-C(14)	1.0(3)
C(12)-C(13)-C(14)-C(15)	-0.8(3)
C(13)-C(14)-C(15)-C(10)	0.1(3)
C(11)-C(10)-C(15)-C(14)	0.5(2)
C(9)-C(10)-C(15)-C(14)	-179.65(15)
C(8)-C(7)-N(1)-C(6)	-2.0(2)
C(9)-C(7)-N(1)-C(6)	178.28(11)
C(1)-C(6)-N(1)-C(7)	-4.44(19)
C(5)-C(6)-N(1)-C(7)	178.06(13)
O(2)-C(8)-N(2)-C(1)	175.40(12)
C(7)-C(8)-N(2)-C(1)	-6.08(18)
C(2)-C(1)-N(2)-C(8)	-179.85(13)
C(6)-C(1)-N(2)-C(8)	0.49(19)

Table 6: Calculated reflections from PowderCell*

h	k	I	20/°	d/Å	l/rel.	F(hkl)
-1	0	1	7.54	11.71	96.77	48.66
1	0	1	9.84	8.98	100.00	64.63
2	0	0	12.67	6.98	11.41	28.19
-2	0	2	15.12	5.86	2.33	15.26
0	1	1	16.93	5.23	61.42	62.12
-1	1	1	17.52	5.06	26.96	42.64
-1	0	3	17.70	5.01	23.08	56.39
-3	0	1	18.43	4.81	41.48	78.80
1	1	1	18.63	4.76	47.72	60.45
0	1	2	19.96	4.44	6.07	23.14
-1	1	2	19.97	4.44	72.17	79.84
-2	1	1	20.22	4.39	11.59	32.41
2	1	0	20.29	4.37	29.58	51.97
1	0	3	20.85	4.26	86.15	129.03
3	0	1	21.48	4.13	5.50	33.61
1	1	2	21.91	4.05	24.67	51.40
-2	1	2	21.93	4.05	79.70	92.44
-3	0	3	22.76	3.90	66.15	123.83
-1	1	3	23.80	3.74	7.55	31.01
0	1	3	24.23	3.67	21.43	53.19
0	0	4	24.42	3.64	14.95	63.39
3	1	0	24.84	3.58	12.86	42.30
-2	1	3	25.07	3.55	5.76	28.59
-3	1	2	25.41	3.50	72.53	102.89
4	0	0	25.49	3.49	2.80	28.71
1	1	3	26.26	3.39	23.12	60.16
-3	1	3	27.82	3.20	12.68	47.35
0	1	4	29.22	3.05	26.88	72.63
-2	1	4	29.23	3.05	12.67	49.90
-4	1	1	29.38	3.04	4.44	29.69
3	0	3	29.81	2.99	2.37	31.18
-4	1	2	29.92	2.98	39.17	89.93

Source: Cu-K_{$\alpha 1$} (λ = 1.540598 Å)

Condition on reflections: $I \ge 2$

Range (2 θ): From 3° to 30°

*PowderCell for Windows (version 2.4) by Kraus W. & Nolze G., Federal institute for materials Research and testing, Rudower Chausse 5, 12489 Berlin Germany.