Electronic Supplementary Material (ESI) for Photochemical & Photobiological Sciences. This journal is © The Royal Society of Chemistry and Owner Societies 2017

Supporting Information

A Benzimidazole based chemodosimeter for the Fluorometric detection of Zn and Cu via 1, 5 proton shifts and C-N Bond Cleavage.

Sohini Basu Roy^a, Chandraday Prodhan^b, Keya Chaudhuri^b, Kajal Krishna Rajak^a*

^aInorganic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata, 700 032, India. E-mail: kajalrajak@hotmail.com, <u>kkrajak@chemistry.jdvu.ac.in</u> ^b CSIR-Indian Institute of Chemical Biology, Molecular Genetics Division, 4, Raja S. C. Mullick Road, Kolkata – 700032,India

CONTENTS

- 1)¹H NMR spectrum (S1) of compound ligand APBHN......
- 2)¹³C NMR spectrum (S2) of compound ligand APBHN.....
- 3) Mass spectrum (S3) of compound ligand APBHN.....
- 4) IR Spectra of Ligand APBHN (S4).
- 5) Mass spectrum (S5) and (S6) of compound Cu-APBHN Complex.
- 6) Mass spectrum (S7) and (S8) of compound Zn-APBHN Complex.
- 7) IR spectra of Cu and Zn complex (S9).
- 8) Determination of Association constant Zinc and Copper complex (S10).
- 9) Determination of Detection limits Zinc and Copper complex (S11).

10) Fluorescence spectra of Amino-phenyl benzaimidazole and Hydroxy napthaldehyde(S12).

- 11) Job's plot by Fluoresence method of Zinc and Copper complex (S13).
- 12) Determination of the fluorescence Quantum yield (Table1).
- 13) Photoluminescence decay of ligand APBHN (S14).
- 14) Computational study (Table2).
- 15) Crystal Data
- 16) EPR Study

¹H NMR spectrum of Compound APBHN

Fig S1: ¹H NMR spectrum of APBHN.

FigS2:¹³C NMR spectrum of Compound APBHN.

Mass spectrum of compound APBHN

Fig S3: Mass spectrum of APBHN.

IR Spectra of the APBHN

Fig S4: IR Spectra of APBHN.

Mass spectrum of the Cu complex (1:1)

Fig S5. Mass spectrum of Cu-APBHN (1:1)complex.

Mass spectrum of the Cu complex (1:2)

Fig S6. Mass spectrum of Cu-APBHN(1:2) complex.

Mass spectrum of the Zinc Complex(1:1).

FigS7: Mass spectrum of Zn-APBHN(1:1) complex.

Mass spectrum of the Zinc complex (1:2).

FigS8. Mass spectrum of the Zn-APBHN(1:2) complex.

IR Spectrum of Copper and Zinc complex:

Fig S9.a)IR spectra of the Cu-APBHN complex. b) IR spectra of the Zn-APBHN complex.

Determination of Association Constant (Ka):

By UV-vis method:

Association constant was calculated according to the Benesi-Hildebrand equation. Ka was calculated following the equation stated below.

$$1/(A-A_o) = 1/{K(A_{max}-A_o)[M^{x+}]^n} + 1/[A_{max}-A_o]$$

Here Ao is the absorbance of receptor in the absence of guest, A is the absorbance recorded in the presence of added guest, Amax is absorbance in presence of added $[M^{x+}]max$ and Ka is the association constant, where $[M^{X+}]$ is $[Zn^{2+}]$ and $[Cu^{2+}]$. The association constant (Ka) could be determined from the slope of the straight line of the plot of 1/(A-Ao) against 1/[M^{x+}] and is found to be 1.34×10^4 M⁻¹ for Zn²⁺ and $6.4X10^4$ M⁻¹ for Cu^{2+.}

FigS10. Benesi-Hildebrand plot from absorption titration data of receptor (10 μ M) with Cu²⁺ and Zn²⁺.

Calculation of the detection limit

The detection limits DL of APBHN for Zn^{2+} and Cu^{2+} were determined from the following equation1:

DL = K * Sb1/S

Where K = 2 or 3 (we take 3 in this case); Sb1 is the standard deviation of the blank solution; S is the slope of the calibration curve.

From the graph (a) we get slope = 1.4×10^{10} , and Sb1 value is 26100 and from graph (b) we get slope = 2.43×10^9 and Sb1 value is 11988.

Thus using the formula we get the Detection Limit for Zn^{2+} is 5.59 μ M i.e. APBHN can detect Zn^{2+} ion in this minimum concentration and Detection Limit for Cu²⁺ is 0.148 μ M.

FigS11: The linear change of fluorescence intensity as a function of (a) $[Cu^{2+}]$ at 435nm and (b) $[Zn^{2+}]$ at 430 nm.

Fluorescence Spectra:

FigS12.Fluoresence Intensity plot of a) Amino-phenyl Benzaimidazole and b) hydroxy napthaldehyde.

Job's plot by absorbance method:

Stock solution of same concentration of sensor and Zn^{2+} and Cu^{2+} was prepared in the order of 10 μ M in (at 25 °C) at pH 7.4 in HEPES buffer. The emission spectrum in each case with different host–guest ratio but equal in volume was recorded. Job's plots were drawn by plotting Δ I.Xhost vs Xhost (Δ I = change of intensity of the emission spectrum during titration and Xhost is the mole fraction of the host in each case, respectively).

FigS13. Jobs plot diagram of HAFPA for a) Cu^{2+} and b) Zn^{2+} (where X_h is the mole fraction of host and ΔI indicates the change of the intensity).

The highest peak at 0.45 indicates the formation of both 1:1 and 1:2 complexes.

Determination of the fluorescence quantum yield

Here, the quantum yield φ was measured using the following equation:

 $\boldsymbol{\Phi}_{\boldsymbol{X}} = \boldsymbol{\Phi}_{\boldsymbol{S}} \mathbf{X} \left(\boldsymbol{I}_{\boldsymbol{x}} / \boldsymbol{I}_{\boldsymbol{s}} \right) \mathbf{X} \left(\boldsymbol{A}_{\boldsymbol{x}} / \boldsymbol{A}_{\boldsymbol{s}} \right) \mathbf{X} \left(\boldsymbol{n}_{\boldsymbol{x}} / \boldsymbol{n}_{\boldsymbol{s}} \right)^2$

where X and S indicate the unknown and standard solution respectively, $\varphi =$ quantum yield, I = area under the emission curve, A = absorbance at the excitation wavelength, and n =index of refraction of the solvent. Here φ measurements were performed using quinine sulphate in ethanol as a standard [$\varphi = 0.54$] (error ~ 10%).

Sample	λ_{max} , nm	λ_{emi} nm	Φ (× 10 ⁻³)	$k_{\rm r}$, s ⁻¹ (×	$k_{\rm nr}, {\rm s}^{-1} (\times$	τ ₁ ,	τ ₂ ,
	$(\epsilon, M^{-1} cm^{-1})$			10 ⁵)	108)	ns	ns
				,	,		
Ligand	398(12612818.3),	385,480	0.76	7.10(385)	1.77(385)	1.069(385)	4.27(385)
	480(12713784)			7.18(480)	1.77(480)	1.058(480)	4.23(480)
Cu	385(1510855440)	385,430,	0.64(385)	7.55(385)	2.94(385)	8.47(385)	3.39(385)
Complex	430(1298335905)	480	0.74(430)	7.12(430)	3.19(430)	1.95(430)	7.82(430)
I	480(1510855440)		0.64(480)	2.16(480)	8.46(480)	2.96(480)	1.18(480)
Zn	385(1346850575)	385,430,	0.72(385)	8.15(385)	7.21(385)	9.44(385)	3.77(385)
Complex	430(1254777430)	480	0.74(430)	6.04(430)	4.24(430)	1.29(430)	5.18(430)
	480(1510855440		0.72(480)	2.80(480)	2.61(480)	2.60(480)	1.04(480)

Photophysical parameters of the complexes in Methanol solution at room temperature. Table (S1):

Photoluminescence Decay of ligand APBHN

Fig.S14 :(a) Changes in the time-resolved photoluminescence decay of Ligand APBHN in methanol at room temperature obtained with 300 nm excitation. The emission at 385 and 480 nm was monitored. **(b)** Change in the absorbance as bar representation of APBHN ($c = 1.0 \times 10^{-5} \text{ M}$) after addition of 1.0 equiv. of each of the guest cations ($c = 2.0 \times 10^{-4} \text{ M}$) to CH₃OH–10 mM aqueous HEPES buffer (8/2, v/v, 25 °C) at 430 nm.

Computational Method

Full geometry optimizations were carried out using the density functional theory (DFT) method at the Becke-3-Lee-Yang-Parr(B3LYP) 24 level for the ligand APBHN and its Zn^{2+} and Cu^{2+} complexes. The 6-31+G (d,p) basis set was assigned for all the elements. All calculations were performed with Gaussian03program with the aid of the Gauss View visualization program.

 Table (S2). Vertical electronic excitations of APBHN,Zn²⁺-APBHN and Cu²⁺- APBHN calculated by TDDFT/B3LYP/CPCM method.

Compoud	Excitation	Theoretical	CI	Aexpt.
		Wavelength((nm)
		nm)		
APBHN	HOMO-1→LUMO+3	228	0.6004	225
	HOMO \rightarrow LUMO+2	229	0.6325	
	HOMO-2 → LUMO	288	0.6932	290
	HOMO-1→ LUMO	339	0.6081	350
Cu-	HOMO-1 \rightarrow LUMO+3	360	0.8680	360
APBHN (1:2)	HOMO-2 \rightarrow LUMO+1	436	0.5825	435
Cu-	HOMO-1 → LUMO	433	0.3417	435
(1:1)	$\begin{array}{c} \text{HOMO} \rightarrow \text{LUMO+1} \\ \text{HOMO-1} \rightarrow \text{LUMO} \end{array}$	366	0.3769 0.1169	360
Zn-	HOMO-3→LUMO+2	340	0.16673	330
APBHN (1:2)	HOMO-1→LUMO	422	0.23471	425
Zn-	HOMO→ LUMO+2	420	0.2929	425
APBHN (1:1)	HOMO → LUMO+2	333	0.2209	330
	HOMO → LUMO+3	291	0.2697	290

Crystal Data

2APBHN,2C ₃ H ₇ NO			
Formula	$C_{54}H_{48}N_8O_4$		
$M_{ m r}$	872		
Crystal system	Monoclinic		
Space group	Сс		
<i>a</i> / Å	33.1101 (12)		
<i>b</i> / Å	8.5492 (3)		
<i>c</i> / Å	16.6530(6)		
lpha /°	90.00 (1)		
eta /°	99.906 (1)		
γ /°	90.00 (1)		
$V/\text{\AA}^3$	4643.6(3) (2)		
Ζ	8		
$D_{\rm calcd}$ /mg m ⁻³	1.246		
μ/mm^{-1}	0.081		
heta /°	2.28-32.3		
T/K	293(2)		
Reflns collected	8079		
R1, ^a wR2 ^b [$I > 2\sigma(I)$]	0.0798, 0.2489		
GOF on F^2	1.029		
CCDC no	1430234		

Table S3: (a) Crystal data and structure refinement parameters for ligand APBHN. **b)** ORTEP plot and atom labelling scheme of **1** at 50% ellipsoid probability. Hydrogen atoms are omitted for clarity

EPR Study

Fig.S15. EPR spectrum Cu²⁺ with increasing concentration of Ligand APBHN in toluene/ methanol (4:1) at 298 K (instrument settings: microwave frequency, 9.4304 GHz; microwave power, 0.998 mW; modulation frequency, 100 kHz).