Electronic Supplementary Material (ESI) for Photochemical & Photobiological Sciences. This journal is © The Royal Society of Chemistry and Owner Societies 2017

ELECTRONIC SUPPLEMENTARY INFORMATION

Fabiano S. Santos,^{a,b} Elamparuthi Ramasamy,^a V. Ramamurthy^{*,a} and Fabiano S. Rodembusch^{*,b}

^{*a*}Department of Chemistry, University of Miami. 1301 Memorial Drive. Cox Science Building, 230, Coral Gables, Florida 33146-0431.

^bGrupo de Pesquisa em Fotoquímica Orgânica Aplicada. Universidade Federal do Rio Grande do Sul - Instituto de Química, Avenida Bento Gonçalves, 9500, CEP 91501-970 Porto Alegre-RS, Brazil. Fax: +55 51 33087204; Tel: +55 51 33086299; E-mail:rodembusch@iq.ufrgs.br

Materials and Methods

The host octaacid (OA) and the guests were synthesized by following procedure previously published in the literature.¹ ¹H and ¹³C NMR spectra (APT) were recorded on a Varian Inova 300 MHz spectrometer or Varian VNMRs 300 MHz spectrometer. The chemical shifts were expressed as δ (ppm) relative to tetramethylsilane (TMS) as the internal standard and using DMSO-*d*⁶ (as the solvents) at room temperature. Data for ¹H NMR were reported as follows: multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet), integration, coupling constant (Hz) and assignment Infrared spectra was recorded at 25°C on a Shimadzu Prestige 21 in ATR mode.

The ¹H NMR titration experiments were carried out on a Bruker 500 MHz NMR spectrometer at 25°C. A solution of the host Octa acid - 600 μ L of a D₂O solution of OA (1 mM OA in 10 mM Na₂B₄O₇) - was taken in a NMR tube. To this solution an 0.25 equivalent increment of the guest was added (2.5 μ L of a 60 mM solution in DMSO-*d*⁶) up to the molar ratio 1:1 (H:G). The measurements were carried out after shaking the NMR tube for 2-5 min after each addition. The completion of complexation was monitored by disappearance of the free host octa acid signals upon the addition of the guest.

The 2:1 host-guest solution was prepared by adding 5.0 μ L of 60 mM DMSO- d_6 solution of the guest to 0.6 mL of 1 mM OA in 10 mM Na₂B₄O₇ water solution and diluted using the latter Na₂B₄O₇ buffer depending on the need.

 ⁽a) E. Ramasamy, N. Jayaraj, M. Porel and V. Ramamurthy, *Langmuir*, **2012**, *28*, 10. (b) E. Barni, P. Savarino,
M. Marzona and M. Piva, *J. Heterocyclic Chem.*, **1983**, *20*, 1517. (c) T. Ozturk, A. S. Klymchenko, A. Capan, S. Oncul, S. Cikrikci, S. Taskiran, B. Tasan, F. B. Kaynak, S. Ozbey, A. P. Demchenko, *Tetrahedron*, **2007**, *63*, 10290.

For the photophysical study all the solvents and reagents were used as received or purified using standard procedures. Spectroscopic-grade solvents (Aldrich) were used for fluorescence and UV-Visible (UV-Vis) measurements. All experiments were performed at room temperature at a concentration of 10^{-5} M. UV-Vis absorption spectra were performed on a Shimadzu UV-2101PC spectrophotometer. Steady-state luminescence spectra were recorded using an Edinburgh Analytical Instruments FS920CDT fluorometer. Capsular assemblies of OA (1 mM) were made separately by adding 5 µL of 60 mM solution of guest (in DMSO- d^6 solution) to 0.6 mL in 10 mM borate buffer in H₂O for a 2:1 (H:G) capsular assembly. These solutions were diluted using 10 mM borate buffer in H₂O. The quantum yield of fluorescence was measured at 25 °C using spectroscopic grade solvents within solutions with an absorbance intensity lower than 0.1 (optical dilute method).² Quinine sulfate (Riedel) in H₂SO₄ 0.5 M was used as the quantum yield standard.³

Fluorescence lifetimes were measured by time-correlated single photon counting using a nF920 fluorometer (Edinburgh Analytical Instruments). As excitation source it was used EPLED-330 and EPLED-360. All measurements were performed at room temperature (25°C). The fluorescence decay curves were analyzed using the software F900 (Analysis of Lifetime Data). A nonlinear least square method was employed for the fit of the decay to a sum of exponentials. The value of χ^2 and a visual inspection of the residuals and the autocorrelation function were used to determine the quality of the fit.

Spectroscopic data of the guests

2-(2'-hydroxyphenyl)benzoxazole (HBO)

White solid. Yield 60%. Melting point: 125-126 °C. ¹H NMR (300 MHz, CDCl₃, TMS): δ (ppm): 7.01 (t, 1H), 7.14 (d, 1H), 7.25 (m, 1H), 7.38 (m, 1H), 7.45 (t, 1H), 7.61 (m, 1H), 7.73 (m, 1H), 8.02 (d, 1H), 11.55 (broad s, 1H, OH).

3-hydroxyflavone (3HF)

White solid. Yield 28%. ¹H NMR (300 MHz, DMSO-*d*⁶, TMS): δ (ppm): 7.37-7.56 (m, 4H), 7.67-7.79 (m, 2H), 8.07 (dd, 1H, $J_0 = 8.22$ Hz and $J_m = 1.76$), 8.16 (dd, 2H, $J_0 = 8.22$ Hz and $J_m = 1.76$ Hz), 9.55 (broad s, 1H, OH). ¹³C NMR (75.4 MHz; DMSO-*d*⁶): δ (ppm): 118.8, 121.7, 124.9, 125.2, 128.1, 128.9, 130.3, 131.7, 134.1, 139.5, 145.6, 155.0, 173.4. FTIR (ATR, cm⁻¹): 3212, 3071, 3056, 3031, 3018, 1610.

^{2.} C. Würth, M. Grabolle, J. Pauli, M. Spieles, U. Resch-Genger, Nat. Protoc., 2013, 8, 1535.

^{3. (}a) J. N. Demas, G. A. Crosby, J. Phys. Chem., 1971, 75, 991. (b) S. Fery-Forgues, D. J. Lavabre, J. Chem. Educ., 1999, 76, 1260.

Photoinduced electron transfer (PET) experiment

Steady-state and time-resolved fluorescence studies were performed using: ⁴

<u>3HF experiment</u>: Stock solutions of $3HF@(OA)_2$ at a concentration of 29.4×10^{-5} M, MV^{+2} or MP^+ at a concentration of 4.75×10^{-3} M, diluted in stock solution of $3HF@(OA)_2$

<u>HBO experiment</u>: HBO@(OA)₂ at a concentration of 1.56×10^{-5} M, MV⁺² or MP⁺ at a concentration of 2.35×10^{-3} M, diluted in HBO@(OA)₂

For PET experiments, the MV^{+2} or MP^+ stock solution was added dropwise to the 3HF or HBO solution, until no further change in the emission spectra was observed. To the measurements, 1.5 mL of 3HF or HBO stock solution was added in a cuvette and added 1.0, 4.0, 7.0, 10.0, 15.0 and 20.0 μ L of the respective MV^{+2} or MP^+ stock solution, as presented in Table ESI1..

Compound	Solvent	Concentration (M)	Amount (µL)	
3HF@(OA) ₂	Buffer ^(a)	2.94x10 ⁻⁵	-	
MV ⁺²	$2 \text{HF}(0, \Lambda)$ solution ^(b)	4 75×10-3	1.0, 4.0, 7.0, 10.0,	
MP^+	SIII (@(OA) ₂ solution	4.75210	15.0, 20.0 (and 30.0) ^(e)	
HBO@(OA) ₂	Buffer ^(a)	1.56x10 ⁻⁵	-	
MV ⁺²	HPOQ(OA) solution(b)	2.25×10^{-3}	1.0, 4.0, 7.0, 10.0, 15.0	
MP^+	$HBO(w(OA)_2 \text{ solution}^{(0)})$	2.53×10 5	and 20.0	
Cucurbit[7]uril (CB7)	Duffor (a)	23.2x10 ^{-4(c)}	20.0	
		35.610 ^{-4(d)}	20.0	

Table ESI1. Working concentrations used to the PET experiment.

^(a)Sodium tetraborate in water [10 mM]. ^(b)10 mM Na₂B₄O₇ solution. ^(c)added to the final solution of $[3HF@(OA)_2]/[MV^{+2}]$ as complexing agent to the electron acceptor. ^(d)added to the final solution of $[HBO@(OA)_2]/[MV^{+2}]$ as complexing agent to the electron acceptor. ^(e)only for $[3HF@(OA)_2]/[MP^+]$.

Photophysics data

^{4.} The electron acceptor (MV^{+2} or MP^{+}) stock solutions were made by its dilution in donor stock solutions to certificate no changes in donor concentration while doing titration experiments.

Fig. ESI1 Absorption spectra of electron acceptors MP⁺, MV⁺² and supramolecular host octaacid (OA) in 10 mM tetraborate buffer in absence of the ESIPT dyes. $[MP^+]=2.62x10^{-4}$ M, $[MV^{+2}]=6.29x10^{-4}$ M and $[OA]=1.00x10^{-3}$ M.

Fig. ESI2 Absorption spectra of HBO and 3HF in 10 mM tetraborate buffer in absence of the ESIPT dyes. [3HF]=10⁻⁷ M and [HBO]=10⁻⁶ M.

Fig. ESI3 Fluorescence emission spectra of electron acceptors MP⁺ (left) and MV⁺² (right) in 10 mM tetraborate buffer in absence of the ESIPT dyes. $[MP^+]=2.62X10^{-4}$ M and $[MV^{+2}]=6.29x10^{-4}$ M. The asterisk indicates the scattering signal from the excitation wavelengths.

Fig. ESI4 UV-Vis absorption titration of $3\text{HF}@(OA)_2$ in 10 mM sodium tetraborate buffer in presence of different amounts of MV⁺² (top) and MP⁺ (bottom) (1.0-20.0 µL). Working concentrations [$3\text{HF}@(OA)_2$]: 2.94x10⁻⁵ M, [MV⁺²] and [MP⁺]: 4.75x10⁻³ M.

Fig. ESI5 Fluorescence titration spectra (left) and normalized fluorescence lifetime curves (right) of $3HF@(OA)_2$ and $HBO@(OA)_2$ in presence of different amounts of MP⁺. Working concentrations [HBO@(OA)_2]: 1.56x10⁻⁵ M, [$3HF@(OA)_2$]: 2.94x10⁻⁵ M and [MP⁺]: 4.75x10⁻³ M. Molar ratio [MP⁺]/[ESIPT@(OA)_2]. The $3HF@(OA)_2$ and $HBO@(OA)_2$ are also presented in absence of the electron acceptor for comparison.

Fig. ESI6 Stern-Volmer plot of $3HF@(OA)_2$ (top) and $HBO@(OA)_2$ (bottom) in presence of different amounts of MP⁺. Working concentrations [HBO@(OA)_2]: 1.56x10⁻⁵ M, [3HF@(OA)_2]: 2.94x10⁻⁵ M and [MP⁺]: 4.75x10⁻³ M.

Table ESI2. Working concentrations (x10⁻⁶ M) of the electron donors HBO@(OA)₂ and $3\text{HF}@(OA)_2$ with the electron acceptor MV⁺², fluorescence intensity and fluorescence lifetime ratios, I₀/I and τ_0/τ , respectively to Stern-Volmer plot.

System	Molar Ratio	[HBO@OA ₂]	[MV ⁺²]	I ₀ /I	τ_0/τ
	0		0	1.000	1.000
	0.1		1.57	1.157	1.021
	0.4		6.25	1.265	1.035
$[MV^{+2}]/[HBO@(OA)_2]$	0.7	15.6	10.9	1.299	1.047
	1.0		15.6	1.378	1.060
	1.5		23.3	1.714	1.082
	2.0		30.9	2.143	1.093
System	Molar Ratio	[3HF@OA ₂]	[MV ⁺²]		
	0		0	1.000	1.000
	0.1		3.16	1.012	1.013
	0.4		12.6	1.072	1.025
$[MV^{+2}]/[3HF@(OA)_2]$	0.7	29.4	22.1	1.134	0.966
	1.0		31.5	1.229	0.974
	1.5		47.0	1.346	0.984
	2.0		62.5	1.486	0.999

Table ESI3. Working concentrations of the electron donors HBO@(OA)₂ and $3HF@(OA)_2$ with the electron acceptor MP⁺, fluorescence intensity and fluorescence lifetime ratios, I₀/I and τ_0/τ , respectively to Stern-Volmer plot.

System	Molar Ratio	[HBO@OA ₂]	[MP ⁺]	I_0/I	τ_0/τ
	0		0	1.000	1.000
	0.1		1.57	1.018	1.038
	0.4		6.25	1.057	1.041
$[MP^+]/[HBO@(OA)_2]$	0.7	15.6	10.9	1.069	1.047
	1.0		15.6	1.078	1.056
	1.5		23.3	1.161	1.054
	2.0		30.9	1.206	1.057
System	Molar Ratio	[3HF@OA ₂]	[MP ⁺]		
	0		0	1.000	1.000
	0.1		3.16	1.006	1.000
	0.4		12.6	1.017	1.003
$[MP^+]/[3HF@(OA)_2]$	1.0	29.4	31.5	1.034	1.006
	1.5		47.0	1.052	1.006
	2.0		62.5	1.059	1.006
	3.0		93.1	1.058	1.007

System	Molar Ratio	Α	B ₁	τ_1	Rel.	B ₂	τ_2	Rel.	χ^2
	0	22.793	-	-	-	13560.423	8.3	100	1.093
	0.1	22.825	-	-	-	12662.848	8.2	100	1.099
	0.4	28.960	-	-	-	7937.069	8.1	100	1.137
[MV ⁺²]/[3HF@(OA) ₂]	0.7	37.478	4748.053	5.2	16.66	14519.707	8.6	83.34	1.116
	1.0	30.866	9007.746	4.7	21.68	17897.311	8.5	78.32	1.078
	1.5	27.280	11613.523	4.1	26.01	16216.216	8.4	73.99	1.101
	2.0	43.502	20653.713	3.7	28.96	22647.094	8.3	71.04	1.090
	0	39.762	-	-	-	21626.883	8.3		1.107
[MP ⁺]/[3HF@(OA) ₂]	0.1	37.908 19132.422 8	8.3		1.111				
	0.4	38.007	-	-	-	19655.053	8.2	100	1.108
	1.0	38.370	-	-	-	21481.475	8.2	100	1.159
	2.0	36.867	-	-	-	19052.787	8.2		1.189
	3.0	39.765	-	-	-	19075.416	8.2		1.170

Table ESI4. Relevant data from the time resolved fluorescence spectroscopy from $3HF@(OA)_2$ inclusion complexes,^a B is the pre-exponential factor, τ is the fluorescence lifetime (in ns), *Rel.* is relative contribution (in %) and χ^2 is the chi-square of the fit.

^aUsing an EPLED of 360 nm as excitation source and emission monitored at 533 nm.

System	Molar Ratio	А	В	τ	Rel.	χ^2
	0	26.933	4236.234	3.7		1.096
	0.1	37.786	6186.172	3.7		1.069
	0.4	44.666	7474.926	3.6		1.096
[MV ⁺²]/[HBO@(OA) ₂]	0.7	64.669	10682.670	3.6	100	1.060
	1.0	72.012	12087.289	3.5		1.020
	1.5	65.128	10856.456	3.5		1.008
	2.0	70.485	10372.511	3.4		1.056
	0	26.933	4236.234	3.7		1.096
	0.1	64.595	8714.659	3.6		1.108
	0.4	105.948	14388.769	3.6		1.082
[MP ⁺]/[HBO@(OA) ₂]	0.7	90.398	12278.782	3.6	100	1.102
	1.0	97.351	11146.600	3.6		1.106
	1.5	127.946	16549.121	3.6		1.109
	2.0	116.001	15357.481	3.5		1.108

Table ESI5. Relevant data from the time resolved fluorescence spectroscopy from HBO@(OA)₂ inclusion complexes,^a B is the pre-exponential factor, τ is the fluorescence lifetime (in ns), *Rel.* is relative contribution (in %) and χ^2 is the chi-square of the fit.

^aUsing an EPLED of 330 nm as excitation source and emission monitored at 495 nm.

Time resolved fluorescence data

Titration data of [*MV*⁺²]/[*HBO*@(*OA*)₂]

Fig. ESI7 Fit results of HBO@ $(OA)_2$ (left). Fluorescence decay curves and the residuals for single or double exponential function fits respectively for the same decay data points (right).

Fig. ESI8 Fit results of $[MV^{+2}]/[HBO@(OA)_2]$ in a molar ratio of 0.1 (left). Fluorescence decay curves and the residuals for single or double exponential function fits respectively for the same decay data points (right).

Fig. ESI9 Fit results of $[MV^{+2}]/[HBO@(OA)_2]$ in a molar ratio of 0.4 (left). Fluorescence decay curves and the residuals for single or double exponential function fits respectively for the same decay data points (right).

Fig. ESI10 Fit results of $[MV^{+2}]/[HBO@(OA)_2]$ in a molar ratio of 0.7 (left). Fluorescence decay curves and the residuals for single or double exponential function fits respectively for the same decay data points (right).

Fig. ESI11 Fit results of $[MV^{+2}]/[HBO@(OA)_2]$ in a molar ratio of 1.0 (left). Fluorescence decay curves and the residuals for single or double exponential function fits respectively for the same decay data points (right).

Fig. ESI12 Fit results of $[MV^{+2}]/[HBO@(OA)_2]$ in a molar ratio of 1.5 (left). Fluorescence decay curves and the residuals for single or double exponential function fits respectively for the same decay data points (right).

Fig. ESI13 Fit results of $[MV^{+2}]/[HBO@(OA)_2]$ in a molar ratio of 2.0 (left). Fluorescence decay curves and the residuals for single or double exponential function fits respectively for the same decay data points (right).

Titration data of [MP⁺]/[HBO@(OA)₂]

Fig. ESI14 Fit results of HBO@(OA)₂ (left). Fluorescence decay curves and the residuals for single or double exponential function fits respectively for the same decay data points (right).

Fig. ESI15 Fit results of $[MP^+]/[HBO@(OA)_2]$ in a molar ratio of 0.1 (left). Fluorescence decay curves and the residuals for single or double exponential function fits respectively for the same decay data points (right).

Fig. ESI16 Fit results of $[MP^+]/[HBO@(OA)_2]$ in a molar ratio of 0.4 (left). Fluorescence decay curves and the residuals for single or double exponential function fits respectively for the same decay data points (right).

Fig. ESI17 Fit results of $[MP^+]/[HBO@(OA)_2]$ in a molar ratio of 0.7 (left). Fluorescence decay curves and the residuals for single or double exponential function fits respectively for the same decay data points (right).

Fig. ESI18 Fit results of $[MP^+]/[HBO@(OA)_2]$ in a molar ratio of 1.0 (left). Fluorescence decay curves and the residuals for single or double exponential function fits respectively for the same decay data points (right).

Fig. ESI19 Fit results of $[MP^+]/[HBO@(OA)_2]$ in a molar ratio of 1.5 (left). Fluorescence decay curves and the residuals for single or double exponential function fits respectively for the same decay data points (right).

Fig. ESI20 Fit results of $[MP^+]/[HBO@(OA)_2]$ in a molar ratio of 2.0 (left). Fluorescence decay curves and the residuals for single or double exponential function fits respectively for the same decay data points (right).

Titration data of [MV⁺²]/[3HF@(OA)₂]

Fig. ESI21 Fit results of $3HF@(OA)_2$ (left). Fluorescence decay curves and the residuals for single or double exponential function fits respectively for the same decay data points (right).

Fig. ESI22 Fit results of $[MV^{+2}]/[3HF@(OA)_2]$ in a molar ratio of 0.1 (left). Fluorescence decay curves and the residuals for single or double exponential function fits respectively for the same decay data points (right).

Fig. ESI23 Fit results of $[MV^{+2}]/[3HF@(OA)_2]$ in a molar ratio of 0.4 (left). Fluorescence decay curves and the residuals for single or double exponential function fits respectively for the same decay data points (right).

Fig. ESI24 Fit results of $[MV^{+2}]/[3HF@(OA)_2]$ in a molar ratio of 0.7 (left). Fluorescence decay curves and the residuals for single or double exponential function fits respectively for the same decay data points (right).

Fig. ESI25 Fit results of $[MV^{+2}]/[3HF@(OA)_2]$ in a molar ratio of 1.0 (left). Fluorescence decay curves and the residuals for single or double exponential function fits respectively for the same decay data points (right).

Fig. ESI26 Fit results of $[MV^{+2}]/[3HF@(OA)_2]$ in a molar ratio of 1.5 (left). Fluorescence decay curves and the residuals for single or double exponential function fits respectively for the same decay data points (right).

Fig. ESI27 Fit results of $[MV^{+2}]/[3HF@(OA)_2]$ in a molar ratio of 2.0 (left). Fluorescence decay curves and the residuals for single or double exponential function fits respectively for the same decay data points (right).

Titration data of [*MP*⁺]/[3*HF*@(*OA*)₂]

Fig. ESI28 Fit results of $3HF@(OA)_2$ (left). Fluorescence decay curves and the residuals for single or double exponential function fits respectively for the same decay data points (right).

Fig. ESI29 Fit results of $[MP^+]/[3HF@(OA)_2]$ in a molar ratio of 0.1 (left). Fluorescence decay curves and the residuals for single or double exponential function fits respectively for the same decay data points (right).

Fig. ESI30 Fit results of $[MP^+]/[3HF@(OA)_2]$ in a molar ratio of 0.4 (left). Fluorescence decay curves and the residuals for single or double exponential function fits respectively for the same decay data points (right).

Fig. ESI31 Fit results of $[MP^+]/[3HF@(OA)_2]$ in a molar ratio of 0.7 (left). Fluorescence decay curves and the residuals for single or double exponential function fits respectively for the same decay data points (right).

Fig. ESI32 Fit results of $[MP^+]/[3HF@(OA)_2]$ in a molar ratio of 1.0 (left). Fluorescence decay curves and the residuals for single or double exponential function fits respectively for the same decay data points (right).

Fig. ESI33 Fit results of $[MP^+]/[3HF@(OA)_2]$ in a molar ratio of 2.0 (left). Fluorescence decay curves and the residuals for single or double exponential function fits respectively for the same decay data points (right).

PET calculation

Doador	Aceptor	E_{D/D^+}	E _{A/A-}	λ (nm)	ΔE ₀₀ (KJ/mol)	ΔG (KJ/mol)	ΔG (Kcal/mol)
3HF@(OA) ₂	MV ⁺² MP ⁺	0.91	-0.69 -1.30	360	332.3	-177.90 -119.04	-42.52 -28.45
HBO@(OA) ₂	MV ⁺² MP ⁺	1.1	-0.69 -1.30	330	362.5	-189.77 -130.90	-45.35 -31.29

Table ESI6. Gibbs free energy for the photoinduced electron transfer process.^a

 $^{a}\Delta G = 96.50 \ (E_{D/D^{+}} - E_{A/A^{-}}) - \Delta E_{00}$