- Electronic Supplementary Information -

Photoluminescent responses of graphene quantum dots toward organic bases and an acid

Kaho Suzuki, Kairi Yamato, Ryo Sekiya, and Takeharu Haino*

Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526 Japan

*To whom correspondence should be addressed.

haino@hiroshima-u.ac.jp

Contents

Experimental Section

• General	··· S3
DLS analysis	··· S3
Computational Detail	··· S3

Supporting Figures and Tables

• Figure S1.	UV/vis absorption and photoluminescence spectra of GQD-1	··· S4
• Figure S2.	UV/vis absorption and photoluminescence titration experiments (amine: 3)	··· S4
• Figure S3.	UV/vis absorption and photoluminescence titration experiments (amine: 4)	··· S4
• Figure S4.	UV/vis absorption and photoluminescence titration experiments (amine: 6)	··· S5
• Figure S5.	UV/vis absorption and photoluminescence titration experiments (NaOH)	··· S5
• Figure S6.	¹ H NMR titration experiment (amine: 6) in chloroform- d_1	··· S5
• Figure S7.	DQF-COSY spectrum of 2 in chloroform- d_1	··· S6
• Figure S8.	DQF-COSY spectrum of 3 in chloroform- d_1	··· S6
• Table S1.	The energy levels of the HOMO and LUMO of 2–6	··· S7

Cartesian Coordinates

··· S8
··· S9
··· S10
··· \$11
··· \$11

References

• References

··· S12

Experimental Section

General

All chemicals and solvents were purchased from Kanto Chemical Co., Ltd., Wako Pure Chemical Co., Ltd., Tokyo Kasei Kogyo Co., Ltd., and Sigma-Aldrich Co., Ltd., and were used as received without further purification. ¹H, and ¹³CNMR spectra were recorded on a VARIAN 300 MHz spectrometer. Chemical shifts are quoted as parts per million (ppm) relative to chloroform (CDCl₃, δ = 7.26 ppm for ¹H and 77.16 ppm for ¹³C). IR absorption spectra were recorded on a JASCO FT/IR-4600 spectrometer using pellets in KBr. UV/vis absorption spectra were recorded on a JASCO V-560 spectrophotometer. Emission spectra were recorded on a JASCO FP-6500 spectrophotometer. GQD-1 were synthesized by the method reported previously.^[1]

Computational Details

Geometry optimizations for **2–6** were performed by *Gaussian 09* using B3LYP/6-31G level of theory.^[2] The energy levels of the HOMO and LUMO of **2–6** are listed in Table S1. The Cartesian coordinates of the energy-minimized conformations of **2–6** are listed in Tables S2-S6.

Supporting Figures and Tables

Figure S1. (a) UV/vis absorption and (b) photoluminescence ($\lambda_{ex} = 360, 380, 400, 420, 440, 460, and 480 nm) spectra of GQD-1 in 1,2-dichlroethane at 293 K.$

Figure S2. (a) UV/vis absorption and (b) photoluminescence ($\lambda_{ex} = 360 \text{ nm}$) titration experiments of GQD-1 in 1,2-dichloroethane at 293 K. Amine: 1,8-diazabicyclo[5.4.0]undec-7-ene (**3**). (c) Stern-Volmer plot of GQD-1 ($\lambda = 450 \text{ nm}$) upon addition of **3**.

Figure S3. (a) UV/vis absorption and (b) photoluminescence ($\lambda_{ex} = 360 \text{ nm}$) titration experiments of GQD-1 in 1,2-dichloroethane at 293 K. Amine: triethylamine (4). (c) Stern-Volmer plot of GQD-1 ($\lambda = 450 \text{ nm}$) upon addition of **3**.

Figure S4. (a) UV/vis absorption and (b) photoluminescence ($\lambda_{ex} = 360 \text{ nm}$) titration experiments of GQD-1 in 1,2-dichloroethane at 293 K. Amine: pyrimidine (6). (c) Stern-Volmer plot of GQD-1 ($\lambda = 450 \text{ nm}$) upon addition of 6.

Figure S5. (a) UV/vis absorption and (b) photoluminescence ($\lambda_{ex} = 360 \text{ nm}$) titration experiments of GQD-1 in a mixed solvent of THF and ethanol at 293 K. Base: sodium hydroxide. (c) Stern-Volmer plot of GQD-1 ($\lambda = 450 \text{ nm}$) upon addition of base.

Figure S6. ¹H NMR (300 MHz, 293 K, chloroform- d_1) titration experiment of GQD-1. Amine: pyrimidine (6). The concentration of **6** was 31.84 mM throughout the experiment. The concentration of GQD-1 were (i) 0, (ii) 0.46, (iii) 0.93, (iv) 1.87, and (v) 3.74 mg mL⁻¹.

Figure S7. DQF-COSY (300 MHz, 293 K, chloroform-*d*₁) of 1.5-diazabicyclo[4.3.0]non-5-ene (**2**).

Figure S8. DQF-COSY (300 MHz, 293 K, chloroform- d_1) of 1,8-diazabicyclo[5.4.0]undec-7-ene (3).

Base	HOMO+1 / hartree	HOMO / hartree	LUMO / hartree	LUMO+1 / hartree
2	-0.22446	-0.19968	+0.04325	+0.08584
3	-0.22085	-0.19642	+0.04519	+0.06936
4	-0.32065	-0.20417	+0.09184	+0.10894
5	-0.26185	-0.25251	-0.02312	-0.01034
6	-0.28997	-0.25465	-0.04299	-0.03085
	HOMO+1 / eV	HOMO / eV	LUMO / eV	LUMO+1 / eV
2	-6.1078	-5.4335	+1.1769	+2.3358
3	-6.0095	-5.3448	+1.2297	+1.8874
4	-8.7272	-5.5557	+2.4991	+2.9644
5	-7.1252	-6.8710	-0.6291	-0.2814
6	-7.8904	-6.9293	-1.1698	-0.8395

Table S1. The energy levels of the HOMO+1, HOMO, LUMO, and LUMO+1 of **2–6** calculated by *Gaussian 09* using B3LYP/6-31G(d,p) level of theory.

1 harteree = 27.211 eV

Cartesian Coordinates

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
		 ^	1.5000		
l	6	0	1.569684	1.181220	-0.185106
2	6	0	2.466481	0.017521	0.281678
3	6	0	1.631262	-1.234551	-0.048824
4	1	0	1.717559	2.096642	0.400465
5	1	0	1.754772	1.433012	-1.243911
6	1	0	3.445932	0.027126	-0.202544
7	1	0	2.624038	0.091484	1.362366
8	1	0	1.776956	-2.066039	0.643780
9	1	0	1.852512	-1.608035	-1.056050
10	6	0	-2.137407	-0.830842	-0.128515
11	6	0	-2.151260	0.617143	0.390968
12	6	0	-0.979572	1.412396	-0.197876
13	1	0	-2.857008	-1.429573	0.442885
14	1	0	-2.490102	-0.855156	-1.170943
15	1	0	-2.055792	0.613129	1.482959
16	1	0	-3.099539	1.108096	0.146885
17	1	0	-0.880798	2.388299	0.293786
18	1	0	-1.143677	1.606501	-1.271522
19	6	0	0.195403	-0.738670	-0.025297
20	7	0	0.232516	0.647547	0.015242
21	7	0	-0.834288	-1.497659	-0.065289

Table S2. Cartesian coordinates of the optimized structure of **2** at the B3LYP/6-31G(d,p) level.

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	X	Y	Ź
1	6	0	2.597149	-0.768363	0.205507
2	6	0	2.372454	0.645508	0.751839
3	6	0	1.445136	1.410606	-0.190834
4	1	0	3.190301	-1.358311	0.914302
5	1	0	3.192533	-0.716371	-0.719964
6	1	0	3.317311	1.187828	0.866653
7	1	0	1.909875	0.577503	1.743879
8	1	0	1.991041	1.707496	-1.099981
9	1	0	1.095356	2.334524	0.285903
10	6	0	-0.954865	1.279000	-0.904078
11	6	0	-1.987395	1.355563	0.243144
12	6	0	-2.036377	0.078357	1.095710
13	6	0	-2.133165	-1.242760	0.314053
14	6	0	-0.970595	-1.524010	-0.685107
15	1	0	-0.691459	2.286213	-1.242645
16	1	0	-1.404643	0.783745	-1.770343
17	1	0	-1.753906	2.204079	0.898480
18	1	0	-2.971937	1.565241	-0.195488
19	1	0	-1.138388	0.042189	1.723521
20	1	0	-2.884604	0.145070	1.787568
21	1	0	-3.087177	-1.285592	-0.226322
22	1	0	-2.162870	-2.055599	1.047834
23	1	0	-1.292922	-1.290500	-1.706801
24	1	0	-0.714870	-2.584181	-0.672416
25	7	0	0.283078	0.594132	-0.545363
26	6	0	0.325256	-0.786474	-0.398075
27	7	0	1.354175	-1.483832	-0.058513

Table S3. Cartesian coordinates of the optimized structure of **3** at the B3LYP/6-31G(d,p) level.

Center	Atomic	Atomic	Coord	dinates (Angst	roms)	
Number	Number	Туре	Х	Y	Z	
1	6	0	-1.928636	1.524753	-0.437753	
2	1	0	-2.682909	0.732182	-0.407871	
3	1	0	-2.411997	2.449403	-0.104492	
4	1	0	-1.615405	1.649359	-1.478300	
5	7	0	0.000386	0.000789	0.019178	
6	6	0	-0.359628	-2.431266	-0.437579	
7	6	0	-0.684318	-1.225974	0.446370	
8	1	0	-1.762407	-1.045772	0.395705	
9	1	0	-0.464477	-1.461749	1.506140	
10	6	0	-0.720303	1.207405	0.444637	
11	1	0	-0.026345	2.051689	0.390897	
12	1	0	-1.032634	1.137021	1.505111	
13	6	0	1.405104	0.021527	0.446450	
14	1	0	1.787512	-1.002486	0.397501	
15	1	0	1.499269	0.331248	1.505816	
16	6	0	2.287595	0.903367	-0.438446	
17	1	0	3.329389	0.858894	-0.103187	
18	1	0	1.981007	1.953775	-0.414234	
19	1	0	2.240218	0.565026	-1.477521	
20	1	0	-0.918696	-3.311642	-0.102794	
21	1	0	0.703644	-2.689910	-0.412060	
22	1	0	-0.627752	-2.221432	-1.477029	

Table S4. Cartesian coordinates of the optimized structure of 4 at the B3LYP/6-31G(d,p) level.

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
			1 197699	0 674071	0.000001
2	6	0	1.143063	-0.720627	0.000000
3	6	0	-1.141366	-0.723246	0.000001
4	6	0	-1.199052	0.671840	0.000001
5	6	0	-0.001591	1.385366	0.000000
6	1	0	2.155685	1.184559	-0.000001
7	1	0	2.061707	-1.304941	0.000001
8	1	0	-2.059013	-1.309161	0.000001
9	1	0	-2.158359	1.179842	-0.000002
10	1	0	-0.002449	2.471638	-0.000005
11	7	0	0.001416	-1.420909	-0.000001

Table S5. Cartesian coordinates of the optimized structure of **5** at the B3LYP/6-31G(d,p) level.

Table S6. Cartesian coordinates of the optimized structure of 6 at the B3LYP/6-31G(d,p) level.

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
1	6	0	-1.309629	0.003347	-0.000036
2	6	0	0.619154	-1.186117	0.000006
3	6	0	1.356270	-0.003120	0.000001
4	6	0	0.625619	1.182843	0.000003
5	1	0	-2.397929	0.005936	0.000085
6	1	0	1.113687	-2.156099	-0.000004
7	1	0	2.440825	-0.006311	-0.000024
8	1	0	1.124174	2.150744	0.000008
9	7	0	-0.719246	-1.197288	0.000007
10	7	0	-0.713503	1.200717	0.000006

References

[1] R. Sekiya, Y. Uemura, H. Naito, K. Naka, and T. Haino, Chem. Eur. J. 2016, 22, 8198-8206.

[2] *Gaussian 09*, Revision C.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2009.