Electronic Supplementary Material (ESI) for Photochemical & Photobiological Sciences. This journal is © The Royal Society of Chemistry and Owner Societies 2017

Electronic Supplementary Information

Photoreduction of Quinones by Thiols Sensitized by Phthalocyanines

Masaaki Yusa^a and Toshi Nagata*^b

^a Department of Structural Molecular Science, The Graduate University for Advanced Studies, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan.

^b Department of Applied Chemistry, Faculty of Science and Technology, Meijo University, 1-501 Shiogamaguchi, Tempaku, Nagoya 468-8502, Japan.

E-mail: tnagata@meijo-u.ac.jp, FAX: +81-52-838-2591

Keywords: photoreduction, phthalocyanine, quinone, thiol

Table of Contents.

Figure S1. The "merry-go-round" apparatus used for photochemical reactions.

Figure S2. The photochemical setup for determination of quantum yields.

Figure S3. Single photon counting measurement of ZnPc fluorescence.

Figure S4. The Stern–Volmer plot of the relative fluorescence intensity to the concentration of quinone.

Figure S5. Cyclic voltammograms of the phthalocyanines.

Figure S6. The initial rates of photoreaction with various concentrations of the quinone (2,5-di-*t*-butylbenzoquinone).

Figure S7. Triplet lifetime measurements of ZnPc in the presence of **1a**, **1c**, and **1d**. **Figure S8**. The closest encounter pair of ZnPc and quinone **1c** found by the molecular dynamics simulation.

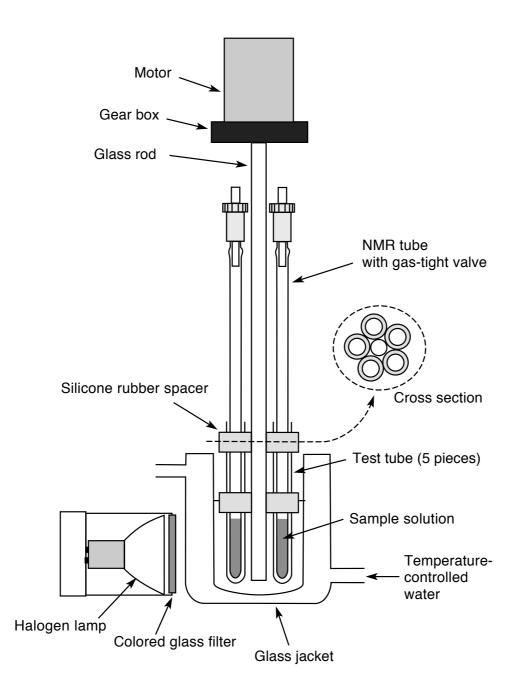


Figure S1. The "merry-go-round" apparatus used for photochemical reactions.

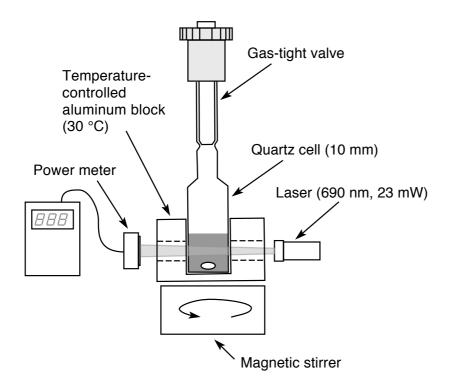
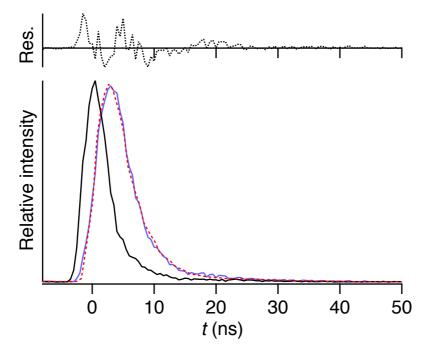
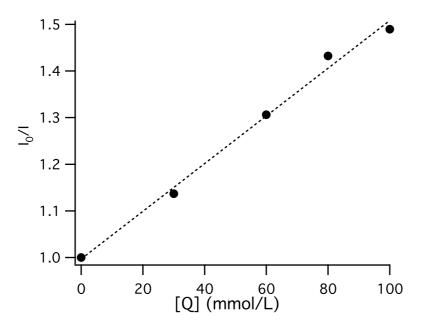




Figure S2. The photochemical setup for determination of quantum yields.

Figure S3. Single photon counting measurement of ZnPc fluorescence (2.0 μ mol/L in degassed toluene, 600 nm/10 ns excitation pulse, observation at 700 nm). Black: instrumental response function, blue: observed fluorescence, dotted red: fitted curve by deconvolution analysis with $\tau = 2.2$ ns.

Figure S4. The Stern–Volmer plot of the relative fluorescence intensity to the concentration of quinone.

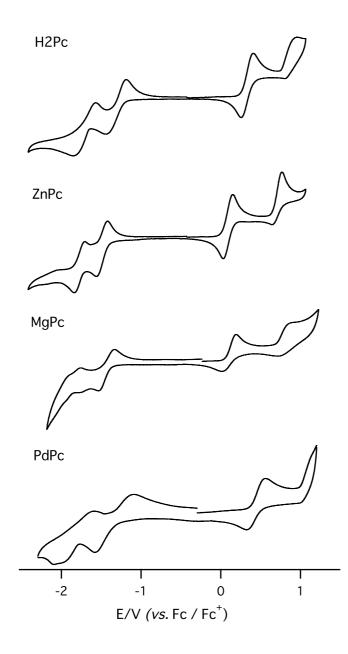
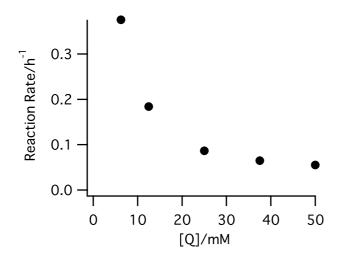



Figure S5. Cyclic voltammograms of the phthalocyanines; 1.0 mmol/L in CH_2Cl_2 with 0.1 mol/L Bu_4NClO_4 . Working electrode: glassy carbon, counter electrode: platinum wire, reference electrode: Ag/AgClO₄. The measurement was performed under N_2 atmosphere. Fc = ferrocene.

Figure S6. The initial rates of photoreaction with various concentrations of the quinone (2,5-di-*t*-butylbenzoquinone). Except for [Q], the conditions are the same as in Table 1, entry 3.

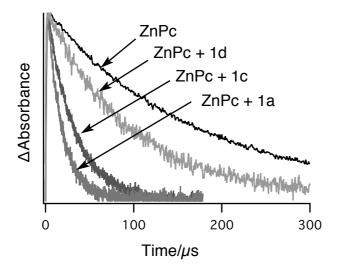
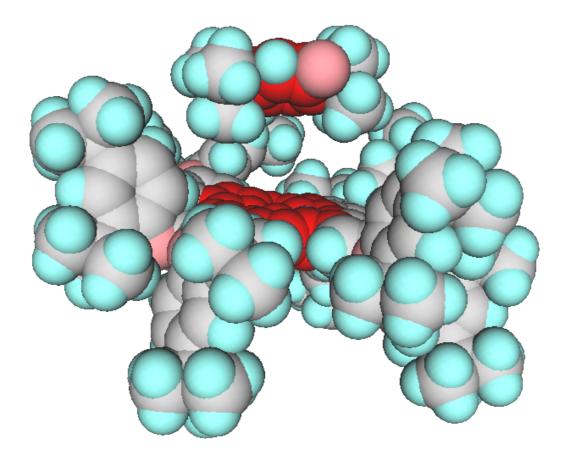



Figure S7. Triplet lifetime measurements of ZnPc in the presence of 1a, 1c, and 1d.

Figure S8. The closest encounter pair of ZnPc and quinone **1c** found by the molecular dynamics simulation. The dark red atoms are the core part of the phthalocyanine and quinone rings. The center-to-center distance was 0.806 nm. The simulation was carried out as follows. The force field parameters and partial charges were determined in a similar method as in our previous work (Kikuzawa et al. *Chem. Asian J.* 2006, **1**, 516–528). One ZnPc molecule and four quinone molecules were placed in a 4 nm×4 nm×4 nm box, and the box was filled with CHCl₃ solvent molecules. The molecular dynamics simulation was run under the periodic boundary conditions, with constant temperature (300 K) and pressure (1.013 bar). Total of 10^7 steps with 2-fs timestep were calculated (20 ns), and the atomic positions were recorded every 5000 steps.