Upper limit to the ultimate achievable emission wavelength in Near-IR emitting cyclometalated Iridium complexes

Marta Penconi^{a§*}, Marco Cazzaniga^{a§}, Sagar Kesarkar^a, Patrizia R. Mussini^b, Davide Ceresoli^a and Alberto Bossi^{a*}

a. Istituto di Scienze e Tecnologie Molecolari ISTM - CNR and SmartMatLab Centre@ISTM, Via Golgi 19, 20133 Milano, Italy

b. Dipartimento di Chimica, Università degli Studi di Milano, and SmartMatLab Centre, Via Golgi 19, 20133 Milano, Italy

Supporting Informations

General section:

Reagents and solvents were purchased from Aldrich and TCI, and used without further purification. All solvents, unless otherwise stated are degassed under argon prior the use. $[(iqbt)_2IrCl]_2$ and **Ir2** were prepared according to the literature.¹

Thin films 4% wt in PMMA were fabricated by spin-coating a toluene mixture of PMMA (100 mg/ml) and the organometallic complex (4 mg/ml) onto quartz plates.

NMR spectra were recorded at 300 K on Bruker AV400 and Bruker AC300 spectrometers. Chemical shifts are expressed in parts per million (ppm) and referred to the residual signal of the solvent (7.26 ppm for ¹H and 77.0 ppm for ¹³C in CDCl₃); coupling constants are given in Hz. Mass analysis were recorded on BRUKER Esquire 3000 PLUS (Esi Ion Trap LC/MSn System). Reverse phase gradient HPLC analysis were performed on Agilent 1100 equipped with VWD UV-Vis detector (set 300 nm) and a Waters Atlantis column (4.6 mm x 10.0 cm, 3 µm particle size). Analysis runned in a 20 minutes gradient elution, flow 1.0 ml/min starting from 70-30 acetonitile – water mixture up to 100% acetonitrile.

Synthesis of the complex Ir(iqbt)₃ (Ir3)

Under Argon atmosphere, $[(iqbt)_2IrCl]_2$ (60 mg, 0.040 mmol, 1eq) and 1-(benzo[b]thiophen-2-yl) isoquinoline (*Hiqbt*) (62.86 mg, 0.240 mmol, 6 eq) in 8 ml of glycerol were heated at 250°C overnight. After cooling the reaction mixture at room temperature, water was added, the solid filtered and washed with water, diethyl ether and hexane. The solid was dried under high vacuum and further purified by flash column chromatography (CH₂Cl₂) and finally recristallized from CH₂Cl₂/Hexane obtaining Ir3 in 88 % yield.

¹H NMR (400 MHz, CDCl₃) δ 6.70 (t, *J* = 7.60 Hz, 3H), 6.79 (d, *J* = 8.17 Hz, 3H), 7.00 (d, *J* = 6.32 Hz, 3H), 7.10 (t, *J* = 7.49 Hz, 3H), 7.21 (d, *J* = 6.30 Hz, 3H), 7.65 (m, 9H), 7.79 (d, *J* = 7.96 Hz, 3H), 9.11 (d, *J* = 8.90 Hz, 3H). HPLC: 99%. ESI-MS: M_w 974.2 [M+H]⁺.

¹ S. Kesarkar, W. Mróz, M. Penconi, M. Pasini, S. Destri, M. Cazzaniga, D. Ceresoli, P. R. Mussini, C. Baldoli, U. Giovanella and A. Bossi, *Angew. Chem.*, 2016, **128**, 2764-2768.

HPLC chromatogram of Ir3

Synthesis of the intermediate (iqbt)PtCl(ĸ-Hiqbt):

Under argon atmosphere 1 eq. of K_2PtCl_4 (100 mg, 0.24 mmol) and 2.2 eq. of 1-(benzo[b]thiophen-2-yl) isoquinoline (*Hiqbt*) (138.51 mg, 0.53 mmol) were heated at 80°C in a deaerated 3:1 mixture of 2-ethoxyethanol (6 ml) and water (2 ml) overnight. After cooling to room temperature, water (20-25mL) was added to the reaction mixture; the precipitate was filtered and the solid washed thoroughly with water followed by isopropanol, diethyl ether and hexane, and dried under high vacuum to yield 180 mg of (iqdt)PtCl(κ -Hiqbt) used in the next steps without further purification.

Synthesis of the complex Pt(iqbt)dpm (Pt1)

Under argon atmosphere, 1 eq. of (iqdt)PtCl(κ -Hiqbt) (50 mg, 0.664 mmol), 2 eq. of ligand 2,2,6,6-Tetramethyl-3,5heptanedione (Hdpm) (24.49 mg, 24.74 µl, 0.1329 mmol) and 9 eq. of K₂CO₃ (82.68 mg, 0.5982 mmol) in 5 ml of deareated 2-ethoxyethanol were heated overnight at 100°C. After cooling the reaction mixture at room temperature, water (20mL) was added to the reaction mixture; the precipitate was filtered and the solid washed thoroughly with water followed by ethyl ether and hexane. The crude product was purified by flash column chromatography using CH₂Cl₂ to yield 38 mg (89%) of Pt(iqdt)dpm.

¹³C-NMR (APT, CDCl₃, 75 MHz, δ ppm): 194.91, 193.60 (Cq, C=O), 145.07, 144.26, 143.14, 137.32, 124.50 (Cq arom), 41.76, 41.50 (Cq, t-Bu), 138.91, 131.75, 128.10, 127.77, 127.07, 126.90, 126.10, 123.79, 121.77, 117.11 (CH arom), 93.71 (CH dpm), 28.90, 28.36 (CH₃).

¹H NMR (300 MHz, CDCl₃) δ 1.34 (s, 9H), 1.39 (s, 9H), 5.95 (s, 1H), 7.34 (d, *J* = 6.5 Hz, 1H), 7.43 – 7.37 (m, 2H), 7.84 – 7.62 (m, 3H), 7.93 – 7.85 (m, 1H), 8.82 (d, *J* = 8.4 Hz, 1H), 9.01 (d, *J* = 6.6 Hz, 1H) 9.17 (m, 1H). HPLC: 97%.

ESI-MS: $M_w 638.0 [M+H]^+$.

HPLC chromatogram of Pt1

Photophysical properties

Table	S1 P	hotophysical	parameter for	r the complexes	Ir3, Ir2	and Pt1	as describe	d in the	main te	xt and	depicted	in Figu	re 2.

			PMMA film						
	Rigidochromic effect /cm ⁻¹	$\Delta E(S_1-T_1) / eV$	$\Delta E(0-1)_{T1}$ /cm ⁻¹	$\Delta E(0-1)_{S1}$ /cm ⁻¹	$\Delta E(0-1)_{S0} / cm^{-1}$	S_M	Stokes shift /cm ⁻¹	$\Delta E(0-1)_{S0} / cm^{-1}$	S_M
Ir3	298	0.50	1397	1150	1362	0.53	87	1188	0.67
Ir2	325	0.46	1426	1193	1384	0.38	63	1238	0.51
Pt1	223	0.64	1431	1274	1396	0.63	125	1331	0.81

Figure S1. Excitation (a) and emission (b) spectra in PMMA films at room temperature of Ir3 (black triangles), Ir2 (red squares) and Pt1 (green circles).

Electrochemical properties

Figure S2. Scan rate effect on the first oxidation peak system and on the first two reduction peaks of complex Pt1.

DFT/TDDFT calculations

Calculated optical absorption energies, oscillator strength and dominant orbital transitions with coefficients from TDDFT (H = HOMO, L = LUMO)

Table S2a: Ir3 – Singlet states

Excited state	Transition (eV)	Transition 7 (nm)	Oscillator strength	Dominant excitations (coefficient)
S1	2.31	537	0.0234	$H \rightarrow L (0.69)$
S2	2.36	525	0.0088	H→L+1 (0.67)
S3	2.38	521	0.0035	H→L+2 (0.68)
S4	2.51	495	0.0302	$H-2 \rightarrow L (0.47), H-1 \rightarrow L (0.45)$
S5	2.52	492	0.0440	$H-2 \rightarrow L (-0.44), H-1 \rightarrow L (0.45)$
S6	2.55	485	0.0123	$H-1 \rightarrow L+1 \ (0.50)$
S7	2.62	473	0.0948	$H-2 \rightarrow L+2 (0.40), H-1 \rightarrow L+2 (0.39)$
S8	2.63	471	0.1271	H−2→L+1 (0.45)
S9	2.71	457	0.1450	$H-2\rightarrow L+1 (0.34), H-2\rightarrow L+2 (0.39), H-1\rightarrow L+2 (-0.39)$
S10	3.34	371	0.0197	H−3→L (0.54)
S11	3.35	370	0.0163	H−4→L (0.53)
S12	3.37	368	0.0049	H→L+3 (0.60)
S13	3.40	364	0.0239	H−3→L+1 (0.48)
S14	3.43	362	0.0566	$H-5 \rightarrow L (0.31), H-3 \rightarrow L+2 (0.35)$
S15	3.44	361	0.0892	H−4→L+1 (0.37), H−3→L+1 (0.35)
S16	3.44	360	0.0476	H−4→L+2 (0.47)
S17	3.47	358	0.0637	H−1→L+3 (0.43)
S18	3.48	356	0.0690	H−2→L+3 (0.37), H→L+5 (-0.34)
S19	3.50	354	0.0371	H−3→L+2 (0.53)
S20	3.53	352	0.0074	$H-5\rightarrow L+1 (0.57)$
S21	3.54	351	0.0019	H−5→L+2 (0.42)
S22	3.55	349	0.0328	$H-5 \rightarrow L+2 (0.43), H \rightarrow L+4 (-0.39)$
S23	3.56	348	0.0180	H−2→L+3 (0.45), H→L+5 (0.44)
S24	3.63	342	0.0042	H−1→L+4 (0.39), H−1→L+5 (-0.36)
S25	3.67	338	0.0093	H−2→L+4 (0.45)
S26	3.68	337	0.0192	$H-1 \rightarrow L+4 \ (0.41)$
S27	3.68	337	0.0535	H−6→L (0.42), H−2→L+5 (-0.40)
S28	3.72	333	0.0163	H−7→L (0.39), H−6→L+1 (-0.38)
S29	3.73	332	0.1002	H−7→L (0.48)
S30	3.74	332	0.0067	H−8→L (0.45), H−6→L+2 (0.40)
S31	3.74	331	0.1157	H−6→L+1 (0.33), H−6→L+2 (-0.29), H−2→L+5 (0.30)
S32	3.75	330	0.0960	H−8→L (0.45), H−6→L+2 (-0.39)
S33	3.81	325	0.0404	H−8→L+1 (-0.37), H−7→L+1 (0.38), H−7→L+2 (-0.37)
S34	3.83	324	0.0685	$H - 8 \rightarrow L + 1 (0.48)$

S35	3.83	324	0.0522	$H-8 \rightarrow L+2 (0.36), H-7 \rightarrow L+1 (0.36), H-7 \rightarrow L+2 (0.39)$
S36	3.92	316	0.0032	$H - 8 \rightarrow L + 2 \ (0.49)$
S37	3.98	312	0.0263	H→L+6 (0.66)
S38	4.00	310	0.0253	$H \rightarrow L+7 (0.66)$
S39	4.04	307	0.0290	$H \rightarrow L + 8 (0.64)$
S40	4.10	303	0.0052	$H - 1 \rightarrow L + 6 \ (0.60)$
S41	4.12	301	0.0041	H−2→L+6 (0.43), H−1→L+7 (-0.38)
S42	4.13	300	0.0023	$H-2 \rightarrow L+7 (0.50)$
S43	4.15	299	0.0029	$H-2 \rightarrow L+6 (0.42), H-1 \rightarrow L+7 (0.45)$
S44	4.17	298	0.0040	H−10→L (0.31), H−2→L+7 (-0.32), H−1→L+8 (0.35)
S45	4.17	297	0.0066	$H - 9 \rightarrow L (0.36)$
S46	4.18	296	0.0122	$H-10 \rightarrow L (-0.41), H-1 \rightarrow L+8 (0.45)$
S47	4.19	296	0.0123	$H-2 \rightarrow L+8 (0.54)$
S48	4.23	293	0.0159	$H - 9 \rightarrow L + 1 \ (0.49)$
S49	4.27	290	0.0088	$H-10 \rightarrow L+2 (0.42), H-9 \rightarrow L+1 (0.36)$
S50	4.28	290	0.0032	$H-10 \rightarrow L+1 \ (0.61)$

Excited state	Transition (eV)	Transition λ (nm)	Oscillator strength	Dominant excitations (coefficient)
T1	1.81	686		$H \rightarrow L (0.44)$
T2	1.82	682		$H-1 \rightarrow L (0.43), H \rightarrow L+2 (-0.40)$
T3	1.82	680		$H-2\rightarrow L+1 (0.39), H\rightarrow L+1 (0.44)$
T4	2.34	529		$H-1 \rightarrow L+2 (0.31), H \rightarrow L (0.36)$
Т5	2.35	527		$H \rightarrow L + 2 (0.44)$
Т6	2.37	523		$H-2\rightarrow L+1 (-0.35), H\rightarrow L+1 (0.39)$
T7	2.47	502		$H-2\rightarrow L (0.40), H-1\rightarrow L+2 (-0.38)$
T8	2.48	501		$H-1 \rightarrow L+1 (0.48)$
Т9	2.50	495		$H-2\rightarrow L+2 (0.51)$
T10	2.81	440		H−3→L (0.39)
T11	2.82	440		H−4→L+1 (0.32), H−3→L+2 (0.31)
T12	2.82	439		$H-4\rightarrow L (0.31), H-4\rightarrow L+1 (0.32)$
T13	3.09	401		H→L+3 (0.48)
T14	3.11	399		$H-1 \rightarrow L+3 \ (0.36), H \rightarrow L+4 \ (0.32)$
T15	3.11	398		$H-2 \rightarrow L+3 (-0.34), H \rightarrow L+5 (0.34)$
T16	3.19	389		H-11 \rightarrow L (-0.21), H-10 \rightarrow L+2 (0.22), H-1 \rightarrow L+6 (-0.22), H \rightarrow L+8 (0.21)
T17	3.19	388		H−10→ L (0.25)
T18	3.20	388		$H - 9 \rightarrow L (0.19), H - 9 \rightarrow L + 1 (0.21)$
T19	3.30	376		$H-5\rightarrow L(0.43)$
T20	3.32	373		H−4→L (0.39)
T21	3.33	372		$H-3\rightarrow L+1 (0.33)$
T22	3.37	368		H−7→L (0.31), H−5→L+2 (-0.27), H−4→L (0.30)
T23	3.38	366		H−8→L (-0.26), H−5→L+1 (0.26), H−4→L+2 (0.30), H−3→L (0.29)
T24	3.39	365		H−3→L+1 (0.44)
T25	3.48	356		$H \rightarrow L+3 \ (0.36)$
T26	3.50	355		$H \rightarrow L + 4 (0.40)$
T27	3.51	354		$H-2 \rightarrow L+3 (0.34), H \rightarrow L+5 (0.36)$
T28	3.53	351		$H-6\rightarrow L(0.43)$
T29	3.55	350		$H-6 \rightarrow L+2 (-0.30), H-5 \rightarrow L+2 (0.35)$
T30	3.55	349		$H - 5 \rightarrow L + 1 \ (0.36)$
T31	3.58	346		$H-6\rightarrow L(0.35)$
T32	3.60	345		$H - 6 \rightarrow L + 1 \ (0.42)$
T33	3.61	344		H−6→L+2 (0.40)
T34	3.65	340		$H-2 \rightarrow L+4 (-0.35), H-1 \rightarrow L+5 (0.36)$
T35	3.66	339		$H-2 \rightarrow L+5 \ (0.36), H-1 \rightarrow L+4 \ (0.39)$
T36	3.68	337		$H-2 \rightarrow L+4 \ (0.36), H-1 \rightarrow L+5 \ (0.35)$
T37	3.73	333		$H \rightarrow -9 \rightarrow L + 1 (-0.20), H \rightarrow -1 \rightarrow L + 6 (0.23), H \rightarrow L + 7 (-0.20)$

 Table S2b: Ir3 – Triplet states

T38	3.73	333	 $H \rightarrow L+6 (0.28)$
T39	3.73	333	 $H-7 \rightarrow L (0.28)$
T40	3.76	330	 $H-7 \rightarrow L+2 (0.37)$
T41	3.77	329	 $H-8 \rightarrow L (-0.26), H-8 \rightarrow L+2 (0.29)$
T42	3.79	327	 $H - 8 \rightarrow L + 1 \ (0.35)$
T43	3.83	323	 $H-1 \rightarrow L+11 \ (0.19)$
T44	3.84	323	 $H-2 \rightarrow L+11 (0.16), H-1 \rightarrow L+10 (0.17), H \rightarrow L+11 (0.17)$
T45	3.85	322	 $H=8 \rightarrow L+2 (-0.18), H=2 \rightarrow L+10 (0.19), H\rightarrow L+12 (0.16)$
T46	4.02	309	 $H \rightarrow L+6 (0.49)$
T47	4.04	307	 $H \rightarrow L + 7 (0.45)$
T48	4.05	306	 $H \rightarrow L+8 (0.48)$
T49	4.08	304	 $H-3 \rightarrow L+3 \ (0.25)$
T50	4.08	304	 $H-4 \rightarrow L+3 (0.28), H-4 \rightarrow L+5 (-0.25)$

Excited	Transition	Transition λ	Oscillator	Dominant excitations (coefficient)
state	(eV)	(nm)	strength	
S1	2.23	557	0.0093	$H \rightarrow L (0.70)$
S2	2.27	545	0.1292	$H \rightarrow L+1 \ (0.70)$
S3	2.89	428	0.0665	$H-1 \rightarrow L (0.55)$
S4	2.93	424	0.1606	$H-2\rightarrow L(0.55)$
S5	2.97	417	0.0409	$H-1 \rightarrow L+1 \ (0.68)$
S6	3.03	409	0.0035	$H \rightarrow L+2 (0.60)$
S7	3.06	406	0.0010	$H-2 \rightarrow L+1 \ (0.55)$
S8	3.23	384	0.0181	H−3→L (0.46)
S9	3.28	378	0.0194	$H \rightarrow L+4 (0.57)$
S10	3.31	375	0.0097	H→L+3 (0.56)
S11	3.31	374	0.0781	$H-3 \rightarrow L+1 \ (0.50)$
S12	3.45	360	0.0717	H−4→L (0.68)
S13	3.48	356	0.0662	$H=5\rightarrow L(0.53)$
S14	3.55	349	0.0000	H−4→L+1 (0.62)
S15	3.59	345	0.1173	$H - 5 \rightarrow L + 1 \ (0.56)$
S16	3.75	330	0.0007	H −1 \rightarrow L+2 (0.68)
S17	3.81	325	0.0052	$H-7 \rightarrow L (0.41), H \rightarrow L+6 (0.45)$
S18	3.82	325	0.0243	$H \rightarrow L+5 (0.53)$
S19	3.83	324	0.0304	$H-2 \rightarrow L+2 (0.49)$
S20	3.86	321	0.0296	$H-6\rightarrow L (0.55)$
S21	3.86	321	0.0057	$H-7 \rightarrow L (0.39), H-2 \rightarrow L+2 (0.39)$
S22	3.90	318	0.0203	$H-6 \rightarrow L+1 \ (0.55)$
S23	3.91	317	0.0065	$H-7 \rightarrow L+1 (-0.43), H-1 \rightarrow L+4 (0.49)$
S24	3.97	312	0.2379	$H-1 \rightarrow L+3 \ (0.60)$
S25	4.03	308	0.0004	$H-7 \rightarrow L+1 (0.42), H-1 \rightarrow L+4 (0.47)$
S26	4.07	304	0.1158	$H-2 \rightarrow L+3 \ (0.67)$
S27	4.08	304	0.0000	$H-2 \rightarrow L+4 \ (0.56)$
S28	4.16	298	0.0119	$H - 3 \rightarrow L + 2 (0.43)$
S29	4.17	297	0.0019	$H \rightarrow L+7 (0.62)$
S30	4.19	296	0.0015	$H=9\rightarrow L (0.52)$
S31	4.20	295	0.0048	$H=8\rightarrow L(0.44)$
S32	4.24	293	0.0051	$H-10 \rightarrow L (0.56)$
S33	4.28	290	0.0083	$H \rightarrow L+9 (0.52)$
S34	4.29	289	0.0042	$H-10 \rightarrow L+1 \ (0.48), H-9 \rightarrow L+1 \ (-0.44)$
S35	4.31	288	0.0050	H→L+8 (0.62)
S36	4.33	286	0.0032	$H - 8 \rightarrow L + 1 \ (0.50)$
S37	4.36	285	0.0003	$H-10 \rightarrow L+1 \ (0.35), H-9 \rightarrow L+1 \ (0.36), H-3 \rightarrow L+3 \ (0.31)$
S38	4.39	282	0.0235	$H \rightarrow L+9 (-0.35), H \rightarrow L+13 (0.37)$
S39	4.42	281	0.0048	$H \rightarrow L+14 (0.45)$

 Table S3a: Ir2 – Singlet states

S40	4.42	281	0.1374	H−3→L+4 (0.55)	
S41	4.44	279	0.0004	H→L+14 (0.38)	
S42	4.46	278	0.0417	H−1→L+5 (0.63)	
S43	4.46	278	0.0056	H−1→L+6 (0.59)	
S44	4.49	276	0.0074	H−4→L+2 (0.62)	
S45	4.51	275	0.0284	$H-5 \rightarrow L+2 (0.54)$	
S46	4.53	274	0.0136	H→L+10 (0.62)	
S47	4.55	272	0.0006	H−10→L+2 (0.52)	
S48	4.58	271	0.0047	H−4→L+3 (0.65)	
S49	4.60	270	0.0089	H−4→L+4 (0.65)	
S50	4.61	269	0.0521	H−2→L+5 (0.61)	

Excited	Transition	Transition λ	Oscillator	Dominant excitations (coefficient)
state	(eV)	(nm)	strength	
T1	1.71	724		$H \rightarrow L (0.64)$
T2	1.76	706		$H \rightarrow L+1 \ (0.61)$
Т3	2.45	507		$H-1 \rightarrow L+1 \ (0.48)$
T4	2.45	506		$H-1 \rightarrow L (0.48)$
T5	2.73	455		$H-2\rightarrow L(0.54)$
T6	2.77	448		$H-2 \rightarrow L+1 \ (0.51)$
T7	2.94	422		$H-3 \rightarrow L+1 (0.30), H-2 \rightarrow L (-0.27), H-2 \rightarrow L+2 (0.28)$
T8	2.94	421		$H-3 \rightarrow L (0.36), H-2 \rightarrow L+1 (-0.35)$
Т9	2.96	419		$H-2 \rightarrow L+2 (0.51)$
T10	3.00	414		$H \rightarrow L+2 \ (0.68)$
T11	3.02	411		$H \rightarrow L+3 \ (0.55)$
T12	3.04	408		$H \rightarrow L+4 \ (0.52)$
T13	3.19	389		$H-5 \rightarrow L (0.37)$
T14	3.20	387		$H \rightarrow 5 \rightarrow L (0.44)$
T15	3.21	386		$H-5 \rightarrow L+1 \ (0.38), H-4 \rightarrow L \ (0.36)$
T16	3.22	385		$H - 5 \rightarrow L + 1 \ (0.36)$
T17	3.48	356		$H=8\rightarrow L+1 (-0.23), H=6\rightarrow L+1 (0.26), H=5\rightarrow L+1 (0.26)$
T18	3.48	356		H−6→L (0.42)
T19	3.52	352		H−4→L (0.40)
T20	3.53	351		H−4→L+1 (0.39), H→L+5 (-0.36)
T21	3.61	344		$H-6 \rightarrow L (0.37), H \rightarrow L+5 (0.38)$
T22	3.66	338		$H - 6 \rightarrow L + 1 (0.44)$
T23	3.68	337		$H-1 \rightarrow L+3 \ (0.47)$
T24	3.70	335		$H-1 \rightarrow L+4 \ (0.53)$
T25	3.75	330		$H-1 \rightarrow L+2 \ (0.69)$
T26	3.80	326		H−7→L (0.51)
T27	3.83	324		$H-7 \rightarrow L+1 (0.37)$
T28	3.86	321		H−7→L+1 (0.40)
T29	3.88	320		$H - 6 \rightarrow L + 1 \ (0.38)$
T30	3.94	315		$H-5 \rightarrow L+2 (0.46), H-3 \rightarrow L+2 (0.49)$
T31	3.96	313		$H-2 \rightarrow L+3 (0.62)$
T32	3.97	312		H→L+14 (0.55)
T33	3.98	311		H−2→L+4 (0.57)
T34	4.05	306		H−7→L+2 (0.43)
T35	4.09	303		H→L+13 (0.41)
T36	4.11	301		H−14→L+1 (-0.24), H→L+8 (0.28)
T37	4.13	300		H−10→L (0.39)
T38	4.15	299		H−10→L (0.48)
T39	4.18	297		H→L+7 (0.58)

Table S3b: Ir2 – Triplet states

T40	4.21	295	 $H-1 \rightarrow L+5 \ (0.36)$
T41	4.21	294	 $H-10 \rightarrow L+1 \ (0.41)$
T42	4.23	293	 $H-10 \rightarrow L+1 \ (0.35), H-1 \rightarrow L+6 \ (0.39)$
T43	4.24	292	 $H-3 \rightarrow L+3 \ (0.42)$
T44	4.26	291	 $H-3 \rightarrow L+4 (0.37), H-1 \rightarrow L+5 (-0.36)$
T45	4.30	288	 $H-11 \rightarrow L+1 (-0.23), H-5 \rightarrow L+3 (0.25)$
T46	4.30	288	 $H-11 \rightarrow L (0.29)$
T47	4.32	287	 $H-9 \rightarrow L (0.41), H-8 \rightarrow L+1 (0.45)$
T48	4.33	286	 $H-10 \rightarrow L+2 \ (0.58)$
T49	4.34	286	 $H-9 \rightarrow L+1 (0.42), H-8 \rightarrow L (0.37)$
T50	4.36	284	 $H - 5 \rightarrow L + 2 (-0.27), H - 3 \rightarrow L + 2 (0.29)$

Excited	Transition	Transition λ	Oscillator	Dominant excitations (coefficient)
state	(eV)	(nm)	strength	
S1	2.50	495	0.1336	$H \rightarrow L (0.69)$
S2	3.16	393	0.0031	$H \rightarrow 3 \rightarrow L (0.70)$
S3	3.18	390	0.0625	$H-1 \rightarrow L (0.65)$
S4	3.29	377	0.0923	$H \rightarrow L+1 \ (0.65)$
S5	3.43	361	0.0959	$H-2\rightarrow L(0.64)$
S6	3.63	341	0.0702	$H \rightarrow L+2 (0.63)$
S7	3.76	330	0.1405	$H-4\rightarrow L(0.63)$
S8	3.81	325	0.0000	$H - 6 \rightarrow L (0.69)$
S9	3.88	320	0.0000	$H-3 \rightarrow L+1 \ (0.70)$
S10	3.89	318	0.0482	$H-1 \rightarrow L+1 \ (0.66)$
S11	4.05	306	0.0002	$H=5\rightarrow L(0.60)$
S12	4.16	298	0.0000	$H \rightarrow L + 6 \ (0.48)$
S13	4.20	295	0.0640	$H \rightarrow L+3 \ (0.59)$
S14	4.27	290	0.0420	$H-7 \rightarrow L (0.46), H-1 \rightarrow L+2 (-0.43)$
S15	4.34	286	0.0047	$H-2 \rightarrow L+1 \ (0.62)$
S16	4.43	280	0.1288	$H-7 \rightarrow L (0.46), H-1 \rightarrow L+2 (0.42)$
S17	4.47	278	0.0000	$H - 6 \rightarrow L + 1 \ (0.68)$
S18	4.47	277	0.0000	H−8→L (0.67)
S19	4.52	275	0.0000	$H-3 \rightarrow L+2 \ (0.66)$
S20	4.55	272	0.0005	$H \rightarrow L + 4 (0.63)$
S21	4.58	271	0.0204	$H \rightarrow L+5 (0.63)$
S22	4.65	267	0.0233	$H-4 \rightarrow L+1 \ (0.56)$
S23	4.66	266	0.0000	$H-1 \rightarrow L+6 (0.43)$
S24	4.66	266	0.0021	$H-3 \rightarrow L+6 (0.41)$
S25	4.71	263	0.0165	$H-2 \rightarrow L+2 \ (0.65)$
S26	4.76	260	0.0015	$H \rightarrow L+7 (0.52)$
S27	4.77	260	0.0101	$H-1 \rightarrow L+3 \ (0.52)$
S28	4.79	259	0.0009	$H - 8 \rightarrow L + 1 \ (0.68)$
S29	4.85	256	0.0000	$H \rightarrow L+9 (0.63)$
S30	4.86	255	0.0148	$H \rightarrow -9 \rightarrow L (0.32), H \rightarrow -5 \rightarrow L +1 (-0.31), H \rightarrow -1 \rightarrow L +3 (-0.28)$
S31	4.93	251	0.0923	$H \rightarrow L+8 (0.47)$
S32	5.01	247	0.0091	$H-10 \rightarrow L (0.31), H-6 \rightarrow L+6 (0.31), H-4 \rightarrow L+2 (0.29)$
S33	5.04	246	0.0068	$H - 5 \rightarrow L + 1 \ (0.45)$
S34	5.06	245	0.0005	$H-3 \rightarrow L+3 (0.70)$
S35	5.07	245	0.0024	$H-10 \rightarrow L (0.36)$
S36	5.08	244	0.0200	H−4→L+2 (0.46)
S37	5.11	243	0.0001	$H \rightarrow L+11 (0.60)$
S38	5.12	242	0.0393	$H-10 \rightarrow L (-0.37), H-4 \rightarrow L+2 (0.36), H-2 \rightarrow L+3 (0.39)$
S39	5.14	241	0.0001	$H-1 \rightarrow L+4 \ (0.60)$

Table S4a: Pt1 – Singlet states

S40	5.20	238	0.0000	$H - 6 \rightarrow L + 2 \ (0.68)$
S41	5.25	236	0.1428	$H-7 \rightarrow L+1 \ (0.62)$
S42	5.26	236	0.0014	$H \rightarrow L+10 (0.51)$
S43	5.37	231	0.0001	$H-2 \rightarrow L+6 (0.32)$
S44	5.38	230	0.1283	$H-1 \rightarrow L+5 \ (0.56)$
S45	5.45	228	0.0465	$H-4 \rightarrow L+3 (0.40)$
S46	5.46	227	0.0000	$H-1 \rightarrow L+7 (0.52)$
S47	5.47	227	0.0114	$H-3 \rightarrow L+4 (0.61)$
S48	5.50	225	0.0042	$H-2 \rightarrow L+4 \ (0.48)$
S49	5.52	225	0.0003	$H-12 \rightarrow L (0.58)$
S50	5.53	224	0.0092	$H-11 \rightarrow L (0.38)$

Excited	Transition	Transition λ	. Oscillator	Dominant excitations (coefficient)
state	(eV)	(nm)	strength	
T1	1.74	711		$H \rightarrow L (0.68)$
T2	2.60	477		$H-1 \rightarrow L (0.62)$
Т3	2.94	421		$H-1 \rightarrow L+1 (-0.39), H \rightarrow L+1 (0.43)$
T4	3.01	412		H−3→L (0.70)
T5	3.08	403		H−2→L (0.33), H→L+2 (0.36)
T6	3.10	400		H−2→L (0.54)
T7	3.14	395		$H-5 \rightarrow L (0.33), H \rightarrow L+1 (0.28)$
T8	3.27	379		H→L+2 (0.43)
Т9	3.44	360		H−4→L (0.46)
T10	3.68	337		H→L+3 (0.50)
T11	3.72	333		H−6→L (0.52)
T12	3.76	330		H−6→L (0.47)
T13	3.83	324		H−3→L+1 (0.69)
T14	3.87	320		H→L+5 (0.34)
T15	4.03	308		H−1→L+2 (0.37)
T16	4.05	306		$H-1 \rightarrow L+6 (0.41)$
T17	4.06	305		H−3→L+6 (0.25), H−2→L+1 (0.23), H−1→L+1 (-0.23)
T18	4.07	305		H−3→L+6 (0.42)
T19	4.14	299		H−4→L+1 (0.38)
T20	4.17	297		H−7→L (0.44)
T21	4.18	296		H-11 \rightarrow L (-0.21), H-10 \rightarrow L (0.24), H-5 \rightarrow L+3 (0.21), H-2 \rightarrow L+1 (0.24)
T22	4 31	288		$H-2 \rightarrow L+1 (0.27)$
T23	4 34	286		$H=6\rightarrow L+1 (0.64)$
T23	4 39	283		$H = 8 \rightarrow I (0.64)$
T25	4 41	283		$H = 9 \rightarrow L_{(0,0,4)}$
T26	4 43	280		$H \rightarrow L + 5 (0, 32)$
T20	4 50	276		$H^{-3} \rightarrow I^{+2} (0.67)$
T28	4 51	275		$H = 8 \rightarrow L + 1 (0.65)$
T20	4 51	275		$H \rightarrow I + 4 (0.57)$
T30	4 51	275		$H \to I + (0.57)$ $H \to I + 3 (0.37)$
T31	4.52	273		$H_{-6} \rightarrow I_{+6} (0.45)$
T32	4.52	269		$H = 7 \rightarrow I + 1 (0.43)$
T22	4.02	269		$\begin{array}{c} H \\ H \\ J \\ +11 \\ (0.27) \end{array}$
T24	4.00	200		$\begin{array}{c} 11 \longrightarrow L^{+} 11 (0.57) \\ U_{-} 10 \ V_{-} (0.25) \end{array}$
1 34 T25	4.08	203		$\begin{array}{c} \Pi^{-1} U \rightarrow L (0.53) \\ U \qquad J \pm 9 (0.54) \end{array}$
133	4.74	203		$\Pi \rightarrow L^{+}\delta (0.34)$
130	4.74	262		$H^{-10} \rightarrow L (0.33), H^{-3} \rightarrow L^{+2} (0.30)$
137	4.80	258		$H \rightarrow L^{+/} (0.49)$
138	4.90	253		H−4→L+2 (0.47)

Table S4b: Pt1 – Triplet states

T39	4.92	252	 $H-2 \rightarrow L+3 \ (0.48)$
T40	4.95	250	 $H \rightarrow L+9 (0.39), H \rightarrow L+11 (0.35)$
T41	5.01	248	 $H \rightarrow L+10 (0.39)$
T42	5.03	246	 $H-3 \rightarrow L+3 \ (0.68)$
T43	5.05	245	 $H-5 \rightarrow L+1 \ (0.54)$
T44	5.10	243	 $H-1 \rightarrow L+4 \ (0.62)$
T45	5.14	241	 $H \rightarrow L+10 (0.34)$
T46	5.14	241	 $H-4\rightarrow L+6 (0.27), H\rightarrow L+11 (-0.24)$
T47	5.18	239	 $H - 6 \rightarrow L + 2 \ (0.68)$
T48	5.19	239	 $H-5 \rightarrow L+3 (-0.25), H-4 \rightarrow L+2 (0.29)$
T49	5.28	235	 $H-5 \rightarrow L+3 \ (0.39)$
T50	5.34	232	 $H-1 \rightarrow L+5 (0.42)$

Fig. S3. Frontier molecular orbitals calculated at the B3LYP level. The value of the isosurface is ± 0.03 bohr⁻³. Blue and red denote positive and negative values, respectively.

Fig S4. Spin density in the triplet geometry, from B3LYP calculations. The value of the isosurface is ± 0.004 bohr⁻³. Azure and green denote positive and negative values.

Ir3	Ir2	Pt1

Fig S5. Calculated atom/ligand contribution (%) to frontier molecular orbitals.

