Electronic Supplementary Material (ESI) for Photochemical & Photobiological Sciences. This journal is © The Royal Society of Chemistry and Owner Societies 2017

Electronic Supplementary Information (ESI)

Blue-Shifted Aggregation-Induced Emission of Siloles by Simple Structural

Modification and Their Application as Nitro Explosive Chemosensor

Jiwon Lee, Yoona Park, Joori Jung and Won-Sik Han*

Department of Chemistry, Seoul Women's University, Seoul 01797, South Korea.

Figure S1. Single crystal structure of <i>m</i> -TS	2
Figure S2. Crystal packing structure of <i>m</i> -TS	3
Table S1. Crystal data and structure refinement for <i>m</i> -TS	4
Table S2. Bond lengths [Å] for m-TS	5
Table S3. Angles [°] for m-TS	6
Table S4. Dihedral angles [°] for m-TS	7
Figure S3. Cyclic voltammograms of HPS, <i>m</i> -TS, and <i>o</i> -TS	8
Figure S4. Photoluminescence spectra of HPS, <i>m</i> -TS, and <i>o</i> -TS in aqueous solution and thin film.	9
Figure S5. Decrement of emission intensities of siloles by addition of <i>o</i> -nitroaniline (<i>o</i> -NA)	10

Figure S1. ORTEP structure of *m*-**TS** showing thermal ellipsoids; the probability level of this structure is 30%. Hydrogen atoms were omitted for clarity.

Figure S2. Crystal packing structure of *m*-TS.

Identification code	m-TS
Empirical formula	C ₄₄ H ₃₈ Si
Formula weight	594.83
Temperature	233(2) K
Wavelength	0.71073 Å
Crystal system, space group	Monoclinic, $P2_1/c$
Unit cell dimensions	<i>a</i> = 8.6135(7) Å
	$b = 10.2226(8)$ Å $\beta = 93.739(2)^{\circ}$
	c = 19.2641(15) Å
Volume	1692.6(2) Å ³
Z, Calculated density	2, 1.167 Mg/m ³
Absorption coefficient, μ	0.099 mm ⁻¹
<i>F</i> (000)	632
Crystal size	$0.17 \times 0.11 \times 0.07 \text{ mm}$
θ range for data collection	1.99 to 28.30°
Limiting indices	$-11 \le h \le 11, -13 \le k \le 13, -25 \le l \le 25$
Reflections collected / unique	$17009 / 4210 [R_{int} = 0.0636]$
Completeness to $\theta = 28.40$	99.8%
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	4210 / 0 / 207
Goodness-of-fit on F^2	1.038
Final <i>R</i> indices $[l \ge 2\sigma(l)]$	$R_1^a = 0.0595, w R_2^b = 0.1397$
R indices (all data)	$R_1^a = 0.1499, w R_2^b = 0.1981$
Largest diff. peak and hole	0.424 and -0.251 e. R_1^a

Table S1. Crystal data and structure refinement for *m*-TS

 $\overline{{}^{a}R_{1} = \sum ||F_{o}| - |F_{c}||} \text{ (based on reflections with } F_{o}^{2} > 2\sigma F^{2}\text{)}, \ {}^{b}wR_{2} = [\sum [w(F_{o}^{2} - F_{c}^{2})^{2}]/\sum [w(F_{o}^{2})^{2}]^{1/2}; \ w = 1/[\sigma^{2}(F_{o}^{2}) + (0.095P)^{2}]; \ P = [\max(F_{o}^{2}, 0) + 2\sigma F^{2})$

 $F_{\rm c}^2]/3$ (also with $F_{\rm o}^2 > 2\sigma F^2$.

Table S2. Bond lengths [Å] for *m*-TS

Si-C(17)#1	1.866(3)	C(7)-C(9)	1.508(5)
Si-C(17)	1.866(3)	C(10)-C(15)	1.383(4)
Si-C(1)#1	1.877(3)	C(10)-C(11)	1.388(4)
Si-C(1)	1.877(3)	C(11)-C(12)	1.394(4)
C(1)-C(2)	1.361(4)	C(12)-C(13)	1.361(5)
C(1)-C(3)	1.482(4)	C(13)-C(14)	1.369(5)
C(2)-C(10)	1.500(4)	C(14)-C(15)	1.419(4)
C(2)-C(2)#1	1.504(5)	C(14)-C(16)	1.489(5)
C(3)-C(4)	1.393(4)	C(17)-C(22)	1.395(4)
C(3)-C(8)	1.393(4)	C(17)-C(18)	1.399(4)
C(4)-C(5)	1.386(4)	C(18)-C(19)	1.378(4)
C(5)-C(6)	1.370(5)	C(19)-C(20)	1.377(4)
C(6)-C(7)	1.388(5)	C(20)-C(21)	1.371(4)
C(7)-C(8)	1.393(4)	C(21)-C(22)	1.389(4)

 Table S3. Angles [°] for m-TS

-	C(17)#1-Si-C(17)	110.14(18)	C(8)-C(7)-C(9)	120.4(4)
	C(17)#1-Si-C(1)#1	110.46(13)	C(7)-C(8)-C(3)	122.5(3)
	C(17)-Si-C(1)#1	116.47(12)	C(15)-C(10)-C(11)	119.1(3)
	C(17)#1-Si-C(1)	116.47(12)	C(15)-C(10)-C(2)	119.2(3)
	C(17)-Si-C(1)	110.45(13)	C(11)-C(10)-C(2)	121.6(3)
	C(1)#1-Si-C(1)	92.04(18)	C(10)-C(11)-C(12)	120.3(3)
	C(2)-C(1)-C(3)	125.3(3)	C(13)-C(12)-C(11)	119.0(4)
	C(2)-C(1)-Si	107.9(2)	C(12)-C(13)-C(14)	123.6(3)
	C(3)-C(1)-Si	126.5(2)	C(13)-C(14)-C(15)	116.7(3)
	C(1)-C(2)-C(10)	123.2(2)	C(13)-C(14)-C(16)	123.5(3)
	C(1)-C(2)-C(2)#1	116.07(16)	C(15)-C(14)-C(16)	119.7(4)
	C(10)-C(2)-C(2)#1	120.75(15)	C(10)-C(15)-C(14)	121.2(3)
	C(4)-C(3)-C(8)	118.0(3)	C(22)-C(17)-C(18)	116.8(3)
	C(4)-C(3)-C(1)	119.8(3)	C(22)-C(17)-Si	121.6(2)
	C(8)-C(3)-C(1)	122.2(3)	C(18)-C(17)-Si	121.6(2)
	C(5)-C(4)-C(3)	119.9(3)	C(19)-C(18)-C(17)	121.8(3)
	C(6)-C(5)-C(4)	120.9(4)	C(20)-C(19)-C(18)	119.9(3)
	C(5)-C(6)-C(7)	120.9(3)	C(21)-C(20)-C(19)	120.1(3)
	C(6)-C(7)-C(8)	117.7(3)	C(20)-C(21)-C(22)	120.1(3)
	C(6)-C(7)-C(9)	121.9(3)	C(21)-C(22)-C(17)	121.3(3)

Table S4. Dihedral angles [°] for *m*-TS

C(17)-Si-C(1)-C(2) 119.3(2) C(2)#1-C(2)-C(10)-C(11)	-67.0(5)
C(1)#1-Si- $C(1)$ - $C(2)$ 0.03(15) $C(15)$ - $C(10)$ - $C(11)$ - $C(12)$	1.9(5)
C(17)#1-Si-C(1)-C(3) 71.5(3) C(2)-C(10)-C(11)-C(12)	-174.5(3)
C(17)-Si-C(1)-C(3) -55.1(3) C(10)-C(11)-C(12)-C(13)	-1.6(5)
C(1)#1-Si-C(1)-C(3) -174.4(3) C(11)-C(12)-C(13)-C(14)	-0.3(5)
C(3)-C(1)-C(2)-C(10) -5.9(5) C(12)-C(13)-C(14)-C(15)	1.8(5)
Si-C(1)-C(2)-C(10) 179.6(2) C(12)-C(13)-C(14)-C(16)	-175.9(3)
C(3)-C(1)-C(2)-C(2)#1 174.4(3) C(11)-C(10)-C(15)-C(14)	-0.4(4)
Si-C(1)-C(2)-C(2)#1 -0.1(4) C(2)-C(10)-C(15)-C(14)	176.1(3)
C(2)-C(1)-C(3)-C(4) 138.5(3) C(13)-C(14)-C(15)-C(10)	-1.4(4)
Si-C(1)-C(3)-C(4) -48.0(4) C(16)-C(14)-C(15)-C(10)	176.4(3)
C(2)-C(1)-C(3)-C(8) -43.1(4) C(17)#1-Si-C(17)-C(22)	-143.5(3)
Si-C(1)-C(3)-C(8) 130.4(3) C(1)#1-Si-C(17)-C(22)	89.7(3)
C(8)-C(3)-C(4)-C(5) 3.1(5) C(1)-Si-C(17)-C(22)	-13.5(3)
C(1)-C(3)-C(4)-C(5) -178.4(3) C(17)#1-Si-C(17)-C(18)	36.7(2)
C(3)-C(4)-C(5)-C(6) -1.6(5) C(1)#1-Si-C(17)-C(18)	-90.0(3)
C(4)-C(5)-C(6)-C(7) -1.1(6) C(1)-Si-C(17)-C(18)	166.8(2)
C(5)-C(6)-C(7)-C(8) 2.1(5) C(22)-C(17)-C(18)-C(19)	-1.1(4)
C(5)-C(6)-C(7)-C(9) -176.9(3) Si-C(17)-C(18)-C(19)	178.6(2)
C(6)-C(7)-C(8)-C(3) -0.5(5) C(17)-C(18)-C(19)-C(20)	0.8(5)
C(9)-C(7)-C(8)-C(3) 178.5(3) C(18)-C(19)-C(20)-C(21)	0.0(5)
C(4)-C(3)-C(8)-C(7) -2.1(5) C(19)-C(20)-C(21)-C(22)	-0.4(5)
C(1)-C(3)-C(8)-C(7) 179.5(3) C(20)-C(21)-C(22)-C(17)	0.1(5)
C(1)-C(2)-C(10)-C(15) -63.2(4) C(18)-C(17)-C(22)-C(21)	0.7(4)
C(2)#1-C(2)-C(10)-C(15) 116.5(4) Si-C(17)-C(22)-C(21)	-179.0(2)

Figure S3. Cyclic voltammograms of **HPS**, *m*-**TS**, and *o*-**TS** in dichloromethane solution containing 0.1 M *n*-Bu₄NPF₆ as electrolyte, at a scan rate of 0.1 V s⁻¹.

Figure S4. Photoluminescence spectra of **HPS**, *m*-**TS**, and *o*-**TS** in acetone/water ($f_w = 90\%$) and solid-state thin layers absorbed on the TLC plates.

Figure S5. Decrement of emission intensities of (a) **HPS**, (b) *m*-**TS**, and (c) *o*-**TS** in acetone/water mixtures by *o*-nitroaniline (*o*-NA) (concentration: 10 μ M and excited at 320 nm).