Electronic Supplementary Material (ESI) for Photochemical & Photobiological Sciences. This journal is © The Royal Society of Chemistry and Owner Societies 2017

Supporting Information

Sequential detection of Fe^{3+/2+} and pyrophosphate by a colorimetric chemosensor in a near-perfect aqueous solution

Ju Byeong Chae, Hyo Jung Jang, Cheal Kim*

Department of Fine Chemistry and Department of Interdisciplinary Bio IT Materials, Seoul National University of Science and Technology, Seoul 139-743, Republic of Korea. Fax: +82-2-973-9149; Tel: +82-2-970-6693; E-mail: chealkim@seoultech.ac.kr

Sensor	Detection limit of Fe ³⁺	Detection limit of PPi (µM)	Percent of water in solution (%)	Method of detection	Reference
	-	-	70	Naked eye	[1]
	15 nM	0.071	70	Naked eye	[2]
	0.36 µM	14.16	99.7	Naked eye	This work

Table S1. Examples for the sequential detection of Fe^{3+} and PPi by organic colorimetric chemosensors.

References

- W. Wang, J. Wei, H. Liu, Q. Liu, Y. Gao, A novel colorimetric chemosensor based on quinoline for the sequential detection of Fe³⁺ and PPi in aqueous solution, *Tetrahedron Lett.* 2017, 58, 1025–1029.
- Z. Li, H. Li, C. Shi, M. Yu, L. Wei, Z. Ni, Nanomolar colorimetric quantitative detection of Fe³⁺ and PPi with high selectivity, *Spectrochim. Acta Part A* 2016, 159, 249–253.

Fig. S1. Job plot of 1 (40 μ M) toward Fe³⁺, where the absorbance at 490 nm was plotted against the mole fraction of Fe³⁺.

Fig. S2. Li's equation of 1 (30 μ M) for Fe³⁺, assuming 2:1 stoichiometry for association of 1 with Fe³⁺.

Fig. S3. Determination of the detection limit of 1 (30 μ M) for Fe³⁺ based on change of absorbance at 490 nm.

Fig. S4. UV-vis absorbance (at 490 nm) of **1** (30 μ M) and Fe³⁺-2·**1** complex, respectively, in different pH (2-12) solution (bis-tris buffer, 10 mM).

Fig. S5. UV-vis absorption change of **1** (30 μ M) with Fe²⁺ ions (0-0.55 equiv) in bis-tris buffer (10 mM, pH = 7.0). Inset : Plot of the absorbance at 490 nm as a function of Fe²⁺ concentration.

Fig. S6. Job plot of 1 (40 μ M) toward Fe²⁺, where the absorbance at 490 nm was plotted against the mole fraction of Fe²⁺.

Fig. S7. Positive-ion ESI-mass spectrum of 1 (100 μ M) upon addition of 0.5 equiv of Fe²⁺.

Fig. S8. Absorption spectra of 1 (30 μ M) with Fe²⁺ (0.5 equiv) under the degassed and oxygenic conditions, and 1 with Fe³⁺ under the oxygenic conditions.

Fig. S9. Formation rates (at 490 nm) of Fe³⁺-2·1 complex obtained from the reactions of 1 (30 μ M) with Fe^{3+/2+} (0.5 equiv).

Fig. S10. X-band EPR spectra of $Fe^{2+}-2\cdot 1$ complex recorded at 4 K. The EPR sample was frozen in liquid nitrogen 10 min after sensor 1 with $Fe(ClO_4)_2$ was mixed in 10 mM bis-tris buffer at room temperature. The experimental parameters: microwave frequency = 9.64 GHz, modulation frequency = 100 kHz, microwave power = 1.0 mW, modulation amplitude = 10 G.

Fig. S11. Li's equation of 1 (30 μ M) for Fe²⁺, assuming 2:1 stoichiometry for association of 1 with Fe²⁺.

Fig. S12. Determination of the detection limit of 1 (30 μ M) for Fe²⁺ based on change of absorbance at 490 nm.

Fig. S13. (a) UV-vis absorption changes (at 490 nm) and (b) the color changes of 1 (30 μ M) upon addition of Fe²⁺ (0.5 equiv) in the absence and presence of other metal ions (0.5 equiv).

(a)

Fig. S14. UV-vis absorbance (at 490 nm) of **1** (30 μ M) and Fe²⁺-2·**1** complex in different pH (2-12) solution (bis-tris buffer, 10 mM), respectively.

Fig. S15. Job plot of Fe³⁺-2·1 complex (40 μ M) toward PPi, where the absorbance at 490 nm was plotted against the mole fraction of PPi.

Fig. S16. Positive-ion ESI-mass spectrum of Fe³⁺-2·1 (100 μ M) upon addition of PPi.

Fig. S17. Benesi-Hildebrand plot of Fe³⁺-2·1 (30 μ M) for PPi, assuming 1:1 stoichiometry for association of Fe³⁺-2·1 with PPi.

Fig. S18. Determination of the detection limit of Fe³⁺-2·1 (30 μ M) for PPi based on change of absorbance at 490 nm.

Fig. S19. UV-vis absorbance (at 490 nm) of Fe³⁺-2·1 (30 μ M) and Fe³⁺-2·1+PPi in different pH (2-12) solution (bis-tris buffer, 10mM), respectively.