Electronic Supplementary Material (ESI) for Photochemical & Photobiological Sciences. This journal is © The Royal Society of Chemistry and Owner Societies 2018

A novel Schiff base derivative of pyridoxal for the optical sensing of Zn²⁺ and cysteine

Thangaraj Anand^a, Ashok Kumar SK^b and Suban K Sahoo^{a*}

^a Department of Applied Chemistry, S.V. National Institute of Technology (SVNIT), Surat-395007, India.

^b Materials Chemistry Division, School of Advanced Sciences, VIT University, Vellore-

632014, India.

Fig. S1. ATR-FTIR spectrum of NPY.

Fig. S4. HRMS spectrum of NPY.

Fig. S5. (a) Image of the fluorescence vials of NPY (2mL, 5×10^{-5} M, DMSO) with different metal ions under UV-lamp λ_{exc} =375 nm and the corresponding fluorescence spectra of NPY (2mL, 5×10^{-5} M, DMSO) upon the addition of Zn²⁺ ions and other alkali, alkaline and transition metal ions (50µl, 1×10^{-3} M, H₂O).

Fig. S6. Benesi-Hildebrand expression fitting of fluorescence curve of NPY in the presence of Zn^{2+} .

Fig. S7. UV-visible (a) and fluorescence (b) spectra of the *in-situ* prepared **NPY**. Zn^{2+} and **NPY**. Zn^{2+} .Cys complexes, and their corresponding synthesized complexes (Syn. Complex).

Fig. S8. HRMS spectrum of synthesized **NPY**.Zn²⁺ complex.

Fig. S9. pH effect on the fluorescence intensity at 475 nm of the solution of NPY in absence and presence of Zn^{2+} ion.

Fig. S10. Colour change of NPY (2 mL, 5×10^{-5} M, DMSO) upon the addition of Zn^{2+} ions (50 μ L, 1×10^{-3} M, H₂O).

Fig. S11. Fluorescence (λ_{exc} = 375 nm) spectral changes of NPY.Zn²⁺ complex (2 mL, 5×10⁻⁵ M, DMSO) upon incremental addition of Cys (4 µL, 1 ×10⁻⁴ M, H₂O).

Fig. S12. (a). B-H plot of fluorescence curve of NPY.Zn²⁺ complex in the presence of Cys.
(b) Plot of fluorescence intensity of NPY.Zn²⁺ complex against [Cys].

Fig. S13. HRMS spectrum of the NPY.Zn²⁺.Cys complex.

Fig. S14. Linear fit analysis for calculating the detection limit of Cys by using the UV-Vis titration data.

Systems	Solvent Systems	Analytes	Detection limit	Applications	Ref
Naphthaldehyde-	MeOH-	Zn ²⁺ - turn off	10 µM	-	
Schiff base	buffer				1
Pyridyl thioether	Methanol			-	
Schiff base		Zn ²⁺ -Turn-on	0.078µM		2
Pyridineamine	HEPES	Zn ²⁺ -turn on	1.91×10 ⁻⁶	-	
schiff base	buffer		M		3
Coumarin Schiff	DMF:H ₂ O	Zn ²⁺ - Turn on	2.59×10-6	-	
base			M		4
Naphthyl	THF:H ₂ O	Zn ²⁺ Colorimetry	3.1 nM	Intracellular	
hydrazide				Imaging	5
conjugate		Al ³⁺ Fluorescence	0.92 nM		
Vanillin Schiff	DMSO:H ₂ O	Zn ²⁺ -Turn On	0.018 µM	Live cell	6
base				imaging	
Triazole Schiff	DMSO:H ₂ O	Zn ²⁺ -Turn on	4.2×10-7	Live cell	7
base			M	imaging	
Trian Schiff base	EtOH:H ₂ O	Zn ²⁺ - Turn on	4.89×10-		8
			⁸ M		
Naphthyl	DMSO:H ₂ O	Zn ²⁺	8.73×10-7	Live cell	This
hydrazide with		and	Μ	imaging	work
pyridoxal		Cysteine	and		
			6.63×10-7		
			Μ		

Table S1. Comparison table of some earlier reported works of Zn^{2+} ion

Table S2. Comparison of various reported official methods for Zn^{2+} detection.

S.No	Methods	LOD	Ref
1	Potentiometry	0.0005 M	9
2	Stripping voltammetry	0.9 μgL ⁻¹	10
3	FAAS	0.05 μgL ⁻¹	11
4	ICP-MS	0.20 μgL ⁻¹	12
5	AAS	0.35 μgL ⁻¹	13

6	IC-ICP-AES	0.07 ng/g	14
7	Colorimetry	1.15×10 ⁻⁷ M	15

References

- 1. A. Hens, *RSC Adv*, 2015, **5**, 54352-54363.
- C. Patra, C. Sen, A. D. Mahapatra, D. Chattopadhyay, A. Mahapatra, C. Sinha, J. Photochem. Photobiol A, 2017, 341, 97-107.
- M. Hosseini, Z. Vaezi, M. R. Ganjali, F. Faridbod, S. D. Abkenar, K. Alizadeh, M. S. Niasari, *Spectrochimi Acta Part A*. 2010, 75, 978-982.
- 4. J.C. Qin, L. Fan, Z.Y. Yang, Sens. Actuators B, 2016, 228, 156-161.
- R. Alam, T. Mistri, R. Bhowmick, A. Katarkar, K. Chaudhuri, M. Ali, *RSC Adv.* 2016, 6, 1268-1278.
- A. K. Bhanja, C. Patra, S. Mondal, D. Ojha, D. Chattopadhyay and C. Sinha, *RSC Adv.*, 2015, 5, 48997-49005.
- M. Iniya, D. Jeyanthi, K. Krishnaveni, A. Mahesh and D. Chellappa, *Spectrochim Acta,* A 2014, 120, 40-46.
- C. Patra, A. K. Bhanja, A. Mahapatra, S. Mishra, K. D. Saha and C. Sinha, *RSC Adv.*, 2016, 6, 76505.
- M. A. Abbasi, Z. H. Ibupoto, M. Hussain, Y. Khan, A. Khan, O. Nur and M. Willander, Sensors, 2012, 12, 15424-15437.
- A. Dueraning, P. Kanatharana, P. Thavarungkul, W. Limbut, *Electrochimica Acta*, 2016, 221, 133-143.
- 11. Q. Li, X. Zhao, Q. Lv, G. Liu, Sep. Purif. Technol., 2007, 55, 76-81.
- 12. D. Kara, A. Fisher, S.J. Hill, Analyst, 2005, 130, 1518
- 13. M. B. Pascua, A. R. Archilla, J. L. Burguera, M. Burguerab, C. Rondon, P. Carrero, *Anal. Chimica. Acta*, 2007, **600**, 214-220.
- 14. P. Wilhartitz, S. Dreer, R. Krismer, O. Bobleter, Microchim. Acta, 1997, 125, 45-52.
- M. Hosseini, Z. Vaezi, M. R. Ganjali, F. Faridbod, S. D. Abkenar, K. Alizadeh, Masoud S. Niasar, *Spectrochimica Acta A*, 2010, **75**, 978-982.
