Electronic Supplementary Information for:

Structurally and Electronically Modulated Spin Interaction of Transient Biradicals in Two Photon-Gated Stepwise Photochromism

Izumi Yonekawa^{\dagger}, *Katsuya Mutoh*^{\dagger}, *Yoichi Kobayashi*^{\ddagger}, and *Jiro Abe*^{\dagger}

[†]Department of Chemistry, School of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuoku, Sagamihara, Kanagawa 252-5258, Japan [‡]Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan

E-mail: jiro_abe@chem.aoyama.ac.jp

CONTENTS

1.	¹ H NMR Spectra	S2
2.	HR-ESI-TOF-MS Spectra	S16
3.	HPLC Chromatograms	S20
4.	Transient Absorption Spectroscopy	S21

1. ¹H NMR Spectra

Fig. S1. ¹H NMR spectrum of **4** in CDCl₃ (* solvent peaks).

Fig. S2. ¹H NMR spectrum of 5 in CDCl₃ (* solvent peaks).

Fig. S3. ¹H NMR spectrum of **6** in CDCl₃ (* solvent peaks).

Fig. S4. ¹H NMR spectrum of **7** in DMSO– d_6 (* solvent peaks).

Fig. S5. ¹H NMR spectrum of **8** in DMSO– d_6 (* solvent peaks).

Fig. S6. ¹H NMR spectrum of **1** in DMSO– d_6 (* solvent peaks).

Fig. S7. ¹H NMR spectrum of **9** in CDCl₃ (* solvent peaks).

Fig. S8. ¹H NMR spectrum of **10** in DMSO– d_6 (* solvent peaks).

Fig. S9. ¹H NMR spectrum of **11** in CDCl₃ (* solvent peaks).

Fig. S10. ¹H NMR spectrum of 12 in CDCl₃ (* solvent peaks).

Fig. S12. ¹H NMR spectrum of **14** in DMSO– d_6 (* solvent peaks).

Fig. S13. ¹H NMR spectrum of **15** in DMSO– d_6 (* solvent peaks).

Fig. S14. ¹H NMR spectrum of **2** in DMSO– d_6 (* solvent peaks).

Fig. S15. ¹H NMR spectrum of **16** in DMSO– d_6 (* solvent peaks).

Fig. S16. ¹H NMR spectrum of 17 in CDCl₃ (* solvent peaks).

Fig. S17. ¹H NMR spectrum of 18 in CDCl₃ (* solvent peaks).

Fig. S18. ¹H NMR spectrum of 19 in CDCl₃ (* solvent peaks).

Fig. S19. ¹H NMR spectrum of 20 in CDCl₃ (* solvent peaks).

Fig. S20. ¹H NMR spectrum of 21 in CDCl₃ (* solvent peaks).

Fig. S21. ¹H NMR spectrum of **22** in DMSO– d_6 (* solvent peaks).

Fig. S22. ¹H NMR spectrum of **23** in DMSO– d_6 (* solvent peaks).

Fig. S23. ¹H NMR spectrum of **3** in DMSO– d_6 (* solvent peaks).

Fig. S24. ¹H NMR spectrum of **24** in DMSO– d_6 (* solvent peaks).

Fig. S25. ¹H NMR spectrum of 28 in CDCl₃ (* solvent peaks).

Fig. S26. ¹H NMR spectrum of **29** in DMSO– d_6 (* solvent peaks).

Fig. S27. ¹H NMR spectrum of 33 in CDCl₃ (* solvent peaks).

Fig. S28. ¹H NMR spectrum of **34** in DMSO– d_6 (* solvent peaks).

2. HR-ESI-TOF-MS Spectra

Fig. S29. HR-ESI-TOF MS spectra of 8.

Fig. S30. HR-ESI-TOF MS spectra of 1.

Fig. S31. HR-ESI-TOF MS spectra of 15.

Fig. S32. HR-ESI-TOF MS spectra of 2.

Fig. S33. HR-ESI-TOF MS spectra of 22.

Fig. S35. HR-ESI-TOF MS spectra of 3.

3. HPLC Chromatograms

HPLC analysis was performed using a reverse phase analytical column (Mightysil RP18, 25cm×4.6mm, 5μm particle) from Kanto Chemical Co., Inc. The HPLC analytical system consists of a pump unit (PU-2080 plus, JASCO), a photodiode array detector (MD-2018, JASCO), and a control unit (LCNetII/ADC, JASCO).

Fig. S36. HPLC charts of (a) **1**, 96 % purity, eluent; CH₃CN:H₂O=9:2, (b) **2**, 99 % purity, eluent; CH₃CN:H₂O=9:2, (c) **3**, 99 % purity, eluent; CH₃CN:H₂O=7:3, with a flow rate of 1.0 mL/min; detection wavelength, 254, 300 and 355 nm.

4. Transient Absorption Spectroscopy

Fig. S37. Transient absorption spectra of **1** in benzene $(7.2 \times 10^{-5} \text{ M})$ at 10 ns after irradiation of 355-nm (5 ns) laser pulse. The power density was 0.6 mJ/mm² and 2.2 mJ/mm².

Fig. S38. Transient absorption spectra of 2 in benzene after irradiation of 355-nm (5 ns, 7 mJ) laser pulse.

Fig. S39. (a) Decay profile (b) logarithmic decay profile of **3** in benzene after 355 nm, 5 ns laser pulse irradiation, observed at 600 nm. The excitation power density was 2.2 mJ/mm².