Electronic Supplementary Material (ESI) for Photochemical & Photobiological Sciences. This journal is © The Royal Society of Chemistry and Owner Societies 2018

Electronic Supplementary Information for

A Leaning Amine–Ketone Dyad with a Nonconjugated Linker: Solvatofluorochromism and Dual Fluorescence Associated with Intramolecular Charge Transfer

Yutaro Kuramoto,^a Takanobu Nakagiri,^a Yasunori Matsui,^{a,b} Eisuke Ohta,^{a,b} Takuya Ogaki,^{a,b} and Hiroshi Ikeda^{a,b,*}

^aDepartment of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1–1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan

^bThe Research Institute for Molecular Electronic Devices (RIMED), Osaka Prefecture University, 1–1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan

*Corresponding author. Phone and Fax: +81 72 254 9289, E-mail address: ikeda@chem.osakafu-u.ac.jp

Table of Contents

1. Wave Deåconvolution of Fluorescence Spectra	S1
2. Excitation Spectra	S2
3. Crystallographic Data of Dyad 4	S2
4. Cyclic Voltammogram	S2
5. NMR Spectra	S 3
6. Calculated Cartesian Coordinates	S4
7. Results of TD-DFT Calculations	S7

1. Wave Deconvolution of Fluorescence Spectra

Fig. S1 Wave deconvolution of fluorescence spectra (black line) of 4 in various solvents $(2.5 \times 10^{-5} \text{ M and } \lambda_{\text{EX}} = \lambda_{\text{AB.M}} = 300 \text{ nm}).$

Table S1 $\lambda_{\text{ICT-FL,M}}$ and ν_{ss} Determined by Above Fluorescence Spectra of 4 in Various Solvents

Salvanta —	$\lambda_{ m ICT-FL,M}{}^{a,b}$	$\mathcal{V}_{ m SS}$
Solvents	nm	10^3 cm^{-1}
CCl ₄	455, 510	19 ^c
C_6H_6	475, 520	12 ^c
THF	519, 586	14 ^c
CHCl ₃	547, 593	15 ^c
CH_2Cl_2	548, 595	15 ^c
CH ₃ CN	564, 615	16 ^c

(a) [4] = 2.5×10^{-5} M. (b) λ_{EX} = 300 nm. (d) The value related to shorter $\lambda_{ICT-FL.M}$.

2. Excitation Spectra

Fig. S2 Excitation spectra of 4 in (a) saturated hydrocarbons (c-C₆H₁₂ and n-C₆H₁₄), (b) aprotic solvents except for CCl₄ and CHCl₃ (C₆H₆, THF, CH₂Cl₂, and CH₃CN), and (c) CCl₄ and CHCl₃ ([4] = 2.5 × 10⁻⁵ M and $\lambda_{\text{DET}} = \lambda_{\text{FL,M}}$).

3. Crystallographic Data of Dyad 4

Fig. S3 Packing structure and molecular structure of 4 in the crystalline state.

4. Cyclic Voltammogram

Fig. S4 Cyclic voltammograms of 4 (red), TPA-^{*t*}Bu, (orange) and benzoquinone (green) in CH_2Cl_2 containing 0.1 M *n*-Bu₄N⁺BF₄⁻. Scan rate: 0.1 Vs⁻¹, reference electrode: Ag/Ag⁺, working and counter electrodes: Pt.

5. NMR Spectra

Fig. S5 ¹H NMR spectrum of 4 (300 MHz, CDCl₃).

Fig. S6¹³C NMR spectrum of 4 (100 MHz, in CDCl₃).

6. Calculated Cartesian Coordinates

Geometry optimizations for 4, TPA-'Bu, 7, LE-4*, and ICT-4* by employing DFT method were performed using Gaussian 09 with the B3LYP functional and 6-31G* basis set. No imaginary frequencies were found. Cartesian coordinates for optimized geometries of 4, TPA-'Bu, 7, LE-4*, and ICT-4* were given in Tables S2, S3, S4, S5, and S6, respectively.

 Table S2
 The Cartesian Coordinates of 4 Optimized at the

 B3LYP/6-31G* Level

	Coordinates / Å			С
Atom	Х	Y	Z	Н
С	2.15538	-0.62506	-0.21439	Н
С	2.92807	0.67362	0.29102	Н
С	0.64070	-0.53912	-0.18735	Н
C	2.80036	-0.95210	-1.60856	Н
C	2 80969	-1 80769	0 58266	Н
C	2.67492	1 87431	-0 57344	С
C C	2.6742	0.95602	1 74185	Н
C C	4 30762	0.01454	0.02689	C
C C	4 31504	-1 35098	0.75672	Н
C C	4 30485	_0 49248	_1 43749	Н
Cl	5 73600	1 05880	0.43028	C
ч	4 55681	1.05880	1 81807	0
II C	5 20410	-1.23039	0.00667	
с	1 52884	-2.13877	0.00007	Tabla S3 TI
П	4.33004	0.29783	-2.13478	the B3I VD/
С	2 27621	-1.39112	-1.44330	
П	2.57031	-1.93470	1.37428	Atom
C	2.54/62	-3.03029	-0.32003	
H	2.35070	-0.39224	-2.43100	C
C	2.53//3	-2.46351	-1./68/8	N
Н	6.36490	-1.98159	0.47926	C
H	5.218/2	-3.23680	0.04786	С
H	6.35561	-1.13744	-1.67723	С
H	5.20893	-2.35563	-2.20371	С
H	1.56983	-3.45515	-0.07143	С
H	3.27962	-3.82915	-0.17558	Н
Н	1.55234	-2.60402	-2.22474	Н
Н	3.25850	-2.95408	-2.42826	Н
С	-0.06685	0.11554	-1.20946	Н
С	-0.11983	-1.06092	0.87052	Н
С	-1.50613	-0.94023	0.91206	С
С	-1.45256	0.23274	-1.18885	С
С	-2.19892	-0.29252	-0.12187	С
Н	0.37027	-1.56275	1.69854	С
Н	-2.05784	-1.34672	1.75348	С
Н	0.46805	0.54287	-2.05173	С
Н	-1.96437	0.73565	-2.00286	С
Ν	-3.60987	-0.16754	-0.09043	Н
С	-4.41572	-1.24044	0.38040	Н
С	-4.22623	1.03961	-0.52869	Н
С	-3.70452	2.28531	-0.14575	Н
С	-5.36559	0.99889	-1.34756	С
С	-5.97254	2.18204	-1.76502	С
С	-4.30724	3.46324	-0.58379	С
С	-5.44616	3.42028	-1.39088	С
Н	-5.77000	0.03836	-1.65115	С
Н	-6.85463	2.13319	-2.39825	С
Н	-2.82836	2.32445	0.49380	Н
Н	-3.89014	4.41901	-0.27790	Н
Н	-5.91788	4.34046	-1.72368	Н
С	-5.51998	-0.99027	1.21105	Н
С	-4.12537	-2.56535	0.01599	**

С	-4.91681	-3.61301	0.48286
С	-6.31639	-2.04301	1.65767
С	-6.01902	-3.36039	1.30229
Н	-3.27999	-2.76607	-0.63451
Н	-4.67746	-4.63203	0.18980
Н	-5.74809	0.03039	1.50101
Н	-7.16717	-1.83051	2.29985
Н	-6.63826	-4.17877	1.65829
Н	2.87397	0.15550	2.44590
С	2.17306	2.11562	2.20374
Н	2.89933	1.77612	-1.63216
С	2.18825	3.03836	-0.11773
Н	1.97926	2.27328	3.26116
Н	2.00924	3.88128	-0.77957
С	1.87132	3.25141	1.30923
0	1.39721	4.30542	1.72435

 Table S3 The Cartesian Coordinates of TPA-^tBu Optimized at the B3LYP/6-31G* Level

28	• .	Coordinates / Å		
)3	Atom	Х	Y	Z
56	С	-0.00323	-0.01689	-0.06425
78	Ν	1.20715	0.13631	0.66443
26	С	-1.01422	0.95513	0.01423
36	С	-0.20951	-1.14635	-0.87352
23	С	-1.40226	-1.29982	-1.57743
71	С	-2.19616	0.80125	-0.70783
43	С	-2.40173	-0.32717	-1.50443
58	Н	0.56892	-1.89931	-0.94460
74	Н	-1.54313	-2.18075	-2.19851
26	Н	-0.86709	1.82772	0.64262
46	Н	-2.96704	1.56406	-0.63386
52	Н	-3.32737	-0.44696	-2.06017
)6	С	1.83334	1.40839	0.75332
35	С	1.78546	-0.98615	1.31947
37	С	0.99268	-1.88827	2.03892
54	С	3.16811	-1.22134	1.25940
48	С	3.72606	-2.31822	1.90706
73	С	1.56501	-2.99407	2.66802
36	С	2.94417	-3.23961	2.62603
43	Н	3.80268	-0.53877	0.70252
40	Н	4.80098	-2.46219	1.83395
59	Н	-0.07858	-1.72455	2.10421
75	Н	0.90745	-3.66366	3.21176
56	С	3.60557	-4.44576	3.31540
)2	С	2.40254	1.84102	1.96250
79	С	1.89666	2.25394	-0.36682
38	С	2.50635	3.50328	-0.27215
15	С	3.02614	3.08475	2.04192
25	С	3.07912	3.92670	0.92916
30	Н	1.46618	1.92550	-1.30743
90	Н	2.54538	4.14317	-1.15001
58	Н	2.35224	1.19743	2.83494
)5	Н	3.46046	3.40179	2.98664

Н	3.55968	4.89852	0.99704
С	4.31510	-5.32068	2.25430
С	4.64735	-3.94683	4.34478
С	2.58375	-5.32746	4.05801
Н	3.59859	-5.69929	1.51633
Н	5.08569	-4.76062	1.71409
Н	4.80077	-6.18187	2.72979
Н	5.42985	-3.34351	3.87275
Н	4.17090	-3.33147	5.11652
Н	5.13428	-4.79642	4.83934
Н	2.06440	-4.77278	4.84790
Н	1.83026	-5.74046	3.37769
Н	3.09881	-6.17110	4.53111

 Table S4 The Cartesian Coordinates of 7 Optimized at the
 B3LYP/6-31G* Level

Atom	Coordinates / Å		
Atom	Х	Y	Ζ
С	2.11355	-0.61884	-0.25103
С	2.87662	0.57226	0.45142
С	2.80301	-0.77611	-1.64626
С	2.68703	-1.91498	0.41072
С	2.67944	1.87967	-0.26171
С	2.55659	0.67433	1.91562
С	4.25566	-0.08192	0.16704
С	4.19501	-1.53276	0.71132
С	4.31134	-0.39060	-1.35167
C1	5.68477	0.85889	0.76849
Н	4.38893	-1.58479	1.78536
С	5.29066	-2.26449	-0.09151
Н	4.59931	0.48052	-1.94504
С	5.36739	-1.51085	-1.45282
Н	2.18078	-2.16802	1.34760
С	2.44472	-3.00028	-0.65946
Н	2.39198	-0.09444	-2.39755
С	2.52145	-2.24662	-2.02067
Н	6.24149	-2.17842	0.44281
Н	5.09052	-3.33326	-0.20231
Н	6.35552	-1.05868	-1.57988
Н	5.20956	-2.16352	-2.31521
Н	1.44995	-3.43546	-0.51554
Н	3.15199	-3.83081	-0.59110
Н	1.56463	-2.30897	-2.55007
Н	3.27074	-2.66429	-2.69803
Н	2.71624	-0.21554	2.51852
С	2.07975	1.78124	2.50553
Н	2.93273	1.90832	-1.31806
С	2.20295	2.98999	0.32202
Н	1.84984	1.80937	3.56717
Н	2.06430	3.91344	-0.23364
С	1.84736	3.03254	1.75531
О	1.39424	4.04153	2.28831
С	0.59496	-0.49888	-0.27023
Н	0.19190	-0.44777	0.74734
Н	0.27903	0.40788	-0.79798
Н	0.12947	-1.35490	-0.77046

 Table S5 The Cartesian Coordinates of LE-4* Optimized at the

 TD-B3LYP/6-31G* Level

1D-B3LYP/6	-31G* Level	-	
Atom		Coordinates / Å	
Atom	Х	Y	Z
С	2.11279	-0.69861	-0.10835
С	2.86737	0.68033	0.17403
С	0.60532	-0.60562	-0.10083
С	2.73197	-1.25333	-1.43736
С	2.75721	-1.74610	0.85856
С	2.62293	1.75396	-0.86274
C	2.61198	1.22559	1.56236
C	4.24676	-0.03569	0.01207
Ċ	4 26259	-1 26031	0.95310
C	4 23958	-0.77692	-1 34697
Cl	5 69465	1.03386	0 22311
н	4 49707	-0.98744	1 98417
C II	5 33855	-2 18316	0 34642
н	J.J5655	-0.11269	-2 18335
II C	4.40075	-0.11209	-2.18555
	2 22510	-1.87284	-1.18110
П	2.55519	-1./3032	1.80071
C U	2.30404	-3.10200	0.10404
н	2.27935	-0.82417	-2.33319
C II	2.46810	-2.77098	-1.35704
Н	6.31123	-1.91442	0.76959
H	5.18104	-3.24151	0.5/410
H	6.28104	-1.4/169	-1.49989
H	5.12593	-2.75790	-1.79605
H	1.53932	-3.50886	0.48990
Н	3.25277	-3.85856	0.41718
H	1.47484	-2.98470	-1.77083
Н	3.17643	-3.36430	-1.94202
С	-0.07276	0.02696	-1.16291
С	-0.17764	-1.08999	0.96315
С	-1.56255	-0.96656	0.97466
С	-1.45394	0.17154	-1.16586
С	-2.20404	-0.33004	-0.09438
Н	0.30278	-1.55897	1.81254
Н	-2.13975	-1.32653	1.82077
Н	0.49661	0.43541	-1.98634
Н	-1.95247	0.65933	-1.99772
Ν	-3.63188	-0.16273	-0.07821
С	-4.45243	-1.26572	0.20584
С	-4.16597	1.11122	-0.32060
С	-3.44402	2.26096	0.07789
С	-5.40576	1.25408	-0.98726
С	-5.91002	2.52213	-1.23444
С	-3.96746	3.52012	-0.17371
С	-5.19843	3.65815	-0.82765
Н	-5.93188	0.37400	-1.33937
Н	-6.85094	2.62962	-1.76468
Н	-2.49924	2.15387	0.59655
Н	-3.41458	4.39689	0.14552
Н	-5.59753	4.64738	-1.02739
С	-5.64237	-1.10257	0.94953
С	-4.07090	-2.55268	-0.23232
C	-4.87903	-3.64372	0.05371
Č	-6.43518	-2.20668	1.23195
Ċ	-6.06205	-3.47872	0.78414

Н	-3.16308	-2.67154	-0.81164
Н	-4.59099	-4.62828	-0.30035
Н	-5.90754	-0.12270	1.32988
Н	-7.33841	-2.07900	1.82004
Н	-6.68546	-4.33811	1.00929
Н	2.79915	0.55932	2.40177
С	2.19649	2.50018	1.80850
Н	2.85042	1.50970	-1.89859
С	2.21399	3.02208	-0.55656
Н	2.04616	2.82212	2.83841
Н	2.08865	3.74887	-1.35856
С	1.95445	3.50378	0.78549
0	1.56440	4.68745	1.04475

 Table S6 The Cartesian Coordinates of ICT-4* Optimized at the TD-B3LYP/6-31G* Level

A 4		Coordinates / Å	
Atom	Х	Y	Ζ
С	-2.19698	-0.80525	0.13741
С	-2.68302	0.69115	-0.17973
С	-0.69335	-0.91889	0.21592
С	-3.00212	-1.24780	1.40272
С	-2.93390	-1.71349	-0.89836
С	-2.31638	1.69289	0.89105
С	-2.22289	1.18662	-1.53189
С	-4.16534	0.22807	-0.13099
С	-4.32320	-0.97457	-1.09078
С	-4.39118	-0.50929	1.21193
Cl	-5.38767	1.53663	-0.43286
Н	-4.43443	-0.66395	-2.13196
С	-5.58356	-1.70060	-0.57798
Н	-4.56067	0.17921	2.04262
С	-5.62827	-1.39306	0.94903
Н	-2.43923	-1.76107	-1.87130
С	-2.96454	-3.09719	-0.21601
Н	-2.55588	-0.91223	2.34207
С	-3.00649	-2.78846	1.30977
Н	-6.46281	-1.27874	-1.07439
Н	-5.58362	-2.77131	-0.80165
Н	-6.52968	-0.82259	1.19277
Н	-5.65230	-2.29439	1.56829
Н	-2.04841	-3.64504	-0.46785
Н	-3.79623	-3.72400	-0.54951

-2.10849	-3.18021	1.80249
-3.85945	-3.24846	1.81654
-0.00886	-0.47636	1.36239
0.08374	-1.31919	-0.88551
1.47103	-1.19954	-0.88716
1.37373	-0.33143	1.37371
2.10796	-0.66274	0.23320
-0.40069	-1.67929	-1.78458
2.04440	-1.44749	-1.77537
-0.56817	-0.17149	2.23674
1.87709	0.07742	2.24457
3.50548	-0.29575	0.16073
4.46841	-1.27532	-0.11252
3.80305	1.06577	0.29421
2.81888	2.02992	-0.04759
5.05012	1.49361	0.81900
5.29158	2.84830	0.97936
3.07327	3.38049	0.12400
4.31227	3.79412	0.63331
5.78297	0.76202	1.14006
6.23722	3.17481	1.40114
1.86496	1.73023	-0.45842
2.27848	4.07399	-0.13591
4.51465	4.85148	0.77336
5.61080	-0.97605	-0.88787
4.27203	-2.59016	0.36308
5.21706	-3.56926	0.09265
6.54323	-1.97021	-1.15350
6.35672	-3.26655	-0.66228
3.39296	-2.81490	0.95563
5.06905	-4.57403	0.47550
5.73139	0.01676	-1.30578
7.41027	-1.73838	-1.76409
7.08846	-4.03921	-0.87592
-2.59039	0.66397	-2.41167
-1.36508	2.23568	-1.69079
-2.76813	1.57007	1.87268
-1.45872	2.73475	0.67882
-1.04697	2.52084	-2.69276
-1.21760	3.40565	1.50257
-0.86095	3.05063	-0.60215
0.01111	3.97605	-0.76639

H H C C C C C H H H H N C C

C C C C

С Н Н Н Н Н С С С С С Н Н Н Н Н Н С Н С Н Н С 0

Wavelength / nm	f	Orbitals	CI Coefficier
423	0.0180	$133 \rightarrow 134$	0.7055
319	0.0155	$133 \rightarrow 135$	0.5518
		$133 \rightarrow 136$	-0.4196
310	0.4124	$133 \rightarrow 135$	0.4241
		$133 \rightarrow 136$	0.5551
300	0.2101	$133 \rightarrow 137$	0.6920
237	0.1032	$123 \rightarrow 134$	-0.1307
		$126 \rightarrow 134$	0.4420
		$129 \rightarrow 134$	0.1279
		$132 \rightarrow 135$	-0.2842
		$132 \rightarrow 136$	0.1689
		$132 \rightarrow 138$	-0.2795
		$132 \rightarrow 140$	0.1537
		$133 \rightarrow 141$	0.1220
		$133 \rightarrow 142$	-0.1011

7. Results of TD-DFT Calculations

 Table S8. Major Electronic Transitions of TPA-^tBu and its Component (HOMO: 81, LUMO: 82)

Wavelength / nm	f	Orbitals	CI Coefficient
318	0.0161	81 → 82	0.68692
		81 → 84	-0.11761
303	0.3114	81 → 83	-0.43108
		81 → 84	0.54300
302	0.2674	81 → 83	0.54733
		81 → 84	0.42186

Tuble 57 hugor Electronic Transitions of 7 and its component (from 0. 75, E0100. 7	Table S9. Ma	jor Electronic	Transitions of 7	and its Comp	onent (HOMO: 73	, LUMO: 74)
---	--------------	----------------	------------------	--------------	-----------------	-------------

Table 59. Major Electronic	Transitions of 7	and its Component (HOMO. 75, LUMO. 74)
Wavelength / nm	f	Orbitals	CI Coefficient
379	0.0000	$73 \rightarrow 74$	0.70327
247	0.0111	$71 \rightarrow 74$	0.69864
241	0.2791	$69 \rightarrow 74$	-0.22192
		$71 \rightarrow 75$	0.17381
		$71 \rightarrow 74$	0.64326

(EOF)