Electronic Supplementary Material (ESI) for Photochemical & Photobiological Sciences. This journal is © The Royal Society of Chemistry and Owner Societies 2018

Supporting Information

Colorimetric detection of iron and fluorescent detection of zinc and cadmium by a chemosensor having a bio-friendly octopamine

Ji Hye Kang and Cheal Kim

Department of Fine Chemistry and Department of Interdisciplinary Bio IT Materials, Seoul National University of Science and Technology, Seoul 139-743, Korea. Fax: +82-2-973-9149; Tel: +82-2-970-6693; E-mail: chealkim@seoultech.ac.kr (C. Kim).

Fig. S1. ¹³C NMR spectrum of 1.

Fig. S2. UV-vis absorption spectra of 1 (20 μ M) in MeOH.

Fig. S3. Job plot for the binding ratio of 1 (80 μ M) toward Fe³⁺ (80 μ M).

Fig. S4. Positive-ion ESI-mass spectrum of 1 (100 μ M) in the presence of 1 equiv of Fe(NO₃)₃.

Fig. S5. The association constant of **1** toward Fe³⁺ using non-linear equation on the basis of UVvis titration.

Fig. S6. The detection limit (*via* 3σ /slope) of **1** (40 μ M) with Fe³⁺ on the basis of UV-vis titrations. σ means the average of the standard deviations.

Fig. S7. Absorbance (at 500 nm) of 1 (40 μ M) and 1-Fe³⁺ complex (0.75 equiv) at pH range of 2-12.

Fig. S8. The calibration curve (at 500 nm) of **1** upon the addition of Fe^{3+} . [**1**] = 40 μ M and $[Fe^{3+}] = 0.0-10.0 \ \mu$ M in buffer (bis-tris, 10 mM, pH = 7.0).

Fig. S9. UV-vis spectral changes of 1 (40 μ M) as the different concentrations of Fe²⁺. Inset: Plot of absorbance at 500 nm vs Fe²⁺ concentration.

Fig. S10. Job plot for the binding ratio of 1 (80 μ M) toward Fe²⁺ (80 μ M).

Fig. S11. Positive-ion ESI-mass spectrum of 1 (100 μ M) in the presence of 1 equiv of Fe(ClO₄)₂.

Fig. S12. The association constant of 1 toward Fe^{2+} using non-linear equation on the basis of UV-vis titration.

Fig. S13. The detection limit (*via* 3σ /slope) of **1** (40 μ M) with Fe²⁺ on the basis of UV-vis titrations. σ means the average of the standard deviations.

Fig. S14. Bar graphs of **1** (40 μ M) for detection of Fe²⁺ in the presence of various metal ions in buffer (bis-tris, 10 mM, pH = 7.0).

Fig. S15. Absorbance (at 500 nm) of 1 (40 μ M) and 1-Fe²⁺ complex (0.75 equiv) at pH range of 2-12.

Fig. S16. UV-vis titrations of 1 (20 μ M) in the change of Zn²⁺ concentrations. Inset: Plot of absorbance at 374 nm vs Zn²⁺ concentration.

Fig. S17. Job plot for the binding ratio of 1 (100 μ M) toward Zn²⁺ (100 μ M).

Fig. S18. Positive-ion ESI-mass spectrum of 1 (100 μ M) in the presence of 1 equiv of $Zn(NO_3)_2$.

Fig. S19. The binding constant of 1 toward Zn^{2+} using Benesi-Hilderbrand equation on the basis of fluorescence titration.

Fig. S20. The detection limit (*via* 3σ /slope) of **1** (20 μ M) with Zn²⁺ on the basis of fluorescence titrations. σ means the average of the standard deviations.

Fig. S21. Bar graphs (at 493 nm) of 1 (20 μ M) for detection of Zn²⁺ in the presence of various metal ions.

Fig. S22. UV-vis titrations of **1** (20 μ M) in the change of Cd²⁺ concentrations. Inset: Plot of absorbance at 327 nm vs Cd²⁺ concentration.

Fig. S23. Job plot for the binding ratio of 1 (100 μ M) toward Cd²⁺ (100 μ M).

Fig. S24. Positive-ion ESI-mass spectrum of 1 (100 μ M) in the presence of 1 equiv of Cd(NO₃)₂.

Fig. S25. ¹H NMR titrations of **1** with $Cd^{2+}(0, 1, 5 \text{ and } 10 \text{ equiv})$.

Fig. S26. The binding constant of 1 toward Cd^{2+} using Benesi-Hilderbrand equation on the basis of fluorescence titration.

Fig. S27. The detection limit (*via* 3σ /slope) of **1** (20 μ M) with Cd²⁺ on the basis of fluorescence titrations. σ means the average of the standard deviations.

Fig. S28. Bar graphs (at 465 nm) of 1 (20 μ M) for detection of Cd²⁺ in the presence of various metal ions.

Excited state 1	Wavelength (nm)	Percent (%)	Main character	Oscillator strength
$H-1 \rightarrow L$	303.96	73	ICT	0.0534
$\mathrm{H} \to \mathrm{\Gamma}$		20	ICT	

Fig. S29. (a) The theoretical excitation energies and the experimental UV-vis spectrum of 1. (b) The major electronic transition energy and molecular orbital contributions for 1 (H = HOMO and L = LUMO).

Fig. S30. (a) The theoretical excitation energies and the experimental UV-vis spectrum of 1- Zn^{2+} . (b) The major electronic transition energy and molecular orbital contributions for 1- Zn^{2+} (H = HOMO and L = LUMO).

Fig. S31. (a) The theoretical excitation energies and the experimental UV-vis spectrum of 1- Cd^{2+} . (b) The major electronic transition energy and molecular orbital contributions for 1- Cd^{2+} (H = HOMO and L = LUMO).

Fig. S32. MO diagrams and excitation energies of 1, $1-Zn^{2+}$ and $1-Cd^{2+}$ by TD-DFT methods.