Electronic Supplementary Information for

"Facile conversion of plant oil (anethole) to a high-performance material"

Yangqing Tao, Fengkai He, Kaikai Jin, Jiajia Wang, Yuanqiang Wang, Junfeng Zhou, Jing Sun* and Qiang Fang*

Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, PR China.

1. Synthesis of M1

A mixture of $\mathrm{M}-\mathrm{BCB}(2.00 \mathrm{~g}, 8.46 \mathrm{mmol}), \mathrm{Pd} / \mathrm{C}(10 \%)(1.80 \mathrm{~g}, 1.69 \mathrm{mmol})$, HOAc (1.02 g , $16.93 \mathrm{mmol})$, THF (10 ml) were added to a 25 ml flask equipped with a magnetic stirrer, then the mixture was kept at room temperature for 24 h under H_{2} atmosphere. M1 was obtained as a colorless liquid with a yield of 96% by column chromatograph using petroleum ether as the eluent. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.13-7.07(\mathrm{~m}, 2 \mathrm{H}), 6.98(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.92-$ $6.86(\mathrm{~m}, 2 \mathrm{H}), 6.87-6.81(\mathrm{~m}, 1 \mathrm{H}), 6.74(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.13(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 4 \mathrm{H}), 2.57-$ $2.52(\mathrm{~m}, 2 \mathrm{H}), 1.67-1.57(\mathrm{~m}, 2 \mathrm{H}), 0.94(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $156.9,156.1,146.8,140.3,137.2,129.6$ (2C), 123.9, 118.4 (3C), 114.3, 37.4, 29.2, 29.0, 24.9, 13.9. $\mathrm{HRMS}-\mathrm{EI}(\mathrm{m} / \mathrm{z})$: Calcd. $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}[\mathrm{M}]^{+}$238.1358; Found 238.1364. Anal. Calcd. $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}$: C, 85.67; H, 7.61; Found: C, 85.58; H, 7.53.

2. Complementary data

Fig. S1 ${ }^{1} \mathrm{H}$ NMR of $\mathbf{B}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Fig. S2 ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{B}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Fig. S3 ${ }^{1} \mathrm{H}$ NMR of $\mathbf{M}-\mathbf{B C B}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Fig. S4 ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{M}-\mathbf{B C B}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Fig. S5 ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{M 1}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Fig. S6 ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{M 1}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Fig. $\mathbf{S} 7{ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{P M 1}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Fig. S8 DMA curves of PM-BCB

Fig. S9 DSC curves of M-BCB at a heating rate of $10^{\circ} \mathrm{C} / \mathrm{min}^{-1}$

Fig. S10 Comparison of FT-IR spectra of M1, PM1, M-BCB and PM-BCB

Fig. S11 Water contact angle of $\mathbf{P M}-\mathbf{B C B}$ sample

