Supporting Information

Dynamic covalent diarylbibenzofuranone-modified nanocellulose: Mechanochromic behaviour and application in self-healing polymer composites

Keiichi Imato,^{1,2,3} Jens C. Natterodt,³ Janak Sapkota,³ Raita Goseki,¹ Christoph Weder,³* Atsushi Takahara,²* Hideyuki Otsuka¹*

¹Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan ²Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan ³Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700 Fribourg, Switzerland

*E-mail: otsuka@polymer.titech.ac.jp

Figure S1. Chemical structure and ¹H NMR spectrum of diisocyanate DABBF (in CDCl₃). The integral of peak p is less than and the integral of peak k is more than those of peaks i, g, and h, indicating that a small fraction of isocyanate groups (approx. 9%) is deactivated.

Figure S2. SEC curve of diisocyanate DABBF after purification. A small fraction of higher molecular weight components is observed in the retention time range from 12 to 13 min.

Figure S3. FT-IR spectra of dihydroxy DABBF (black) and diisocyanate DABBF (blue). The carbonyl stretching vibration band and the isocyanate stretching vibration band are observed at 1720 cm⁻¹ and 2270 cm⁻¹, respectively.

Figure S4. FT-IR spectra of unmodified CNCs (black) and DABBF-modified CNCs (blue). The carbonyl stretching vibration band is observed at 1800 cm⁻¹.

		С	Н	Ν	0
Unmodified CNCs	Fraction / %	41.49	5.93	0.12	47.77
	Composition	12	20	0	10
Modified CNCs	Fraction / %	42.94	5.8	0.56	47.16
	Composition	455	731	4	375

Table S1. Results of elemental analyses for unmodified CNCs and DABBF-modified CNCs

Figure S5. Thermogravimetric analyses for unmodified CNCs (black) and DABBF modified CNCs (blue). The weight losses at below 120 °C represent the evaporation of adsorbed water.

Figure S6. TEM images of (a) unmodified CNCs and (b) DABBF-modified CNCs.

Figure S7. Chemical structure and ¹H NMR spectrum of cross-linked polymer with DABBF (in CDCl₃). The composition ratio was determined to be 1/1.38/5.93/3.05 of TEA/DABBF/HDI/PPG, which is largely similar to the feed ratio (1/1.5/6/3).

Figure S8. Stress-strain curves of composite films with 0 wt% (black), 2 wt% (blue), 5 wt% (red), and 10 wt% (green) of (a) unmodified CNCs or (b) DABBF-modified CNCs.

Figure S9. TEM images of composite films with 2 wt%, 5 wt%, and 10 wt% of (a) unmodified CNCs or (b) DABBF-modified CNCs. Dispersed and aggregated CNCs were observed. Large CNC aggregation was observed in the composites with 10 wt% of unmodified and DABBF-modified CNCs.

Figure S10. DSC curves of composite films with 0 wt% (black), 2 wt% (blue), 5 wt% (red), and 10 wt% (green) of unmodified CNCs (solid lines) or DABBF-modified CNCs (dotted lines).

Figure S11. Thermogravimetric analyses for composite films with 0 wt% (black), 2 wt% (blue), 5 wt% (red), and 10 wt% (green) of (a) unmodified CNCs or (b) DABBF-modified CNCs.

	wt%	Unmodified CNCs wt%			Modified CNCs wt%		
	0	2	5	10	2	5	10
T _g / °C	-58.6	-58.2	-58.3	-58.4	-58.3	-58.4	-58.2
Degrad. temp. / °C	305	308	313	316	317	314	317

Table S2. Glass transition temperatures and degradation (5% weight decrease) temperatures for composite films with unmodified CNCs or DABBF-modified CNCs