Synthesis and Characterization of Semiaromatic Polyamides Comprising Benzofurobenzofuran Repeating Units

Electronic Supplementary Information

Julien Cretenoud,¹ Bilal Özen,¹ Thomas Schmaltz,¹ Daniel Görl,¹ Alberto Fabrizio,² Clémence Corminboeuf,² Farzaneh Fadaei Tirani,³ Rosario Scopelliti,³ Holger Frauenrath^{1,*}

> ¹ Ecole Polytechnique Fédérale de Lausanne (EPFL) Institute of Materials Laboratory of Macromolecular and Organic Materials

> > EPFL–STI–IMX–LMOM MXG 037, Station 12 1015 Lausanne, Switzerland

holger.frauenrath@epfl.ch

² Ecole Polytechnique Fédérale de Lausanne (EPFL) Institute of Chemical Science and Engineering Computational Molecular Design Laboratory

³ Ecole Polytechnique Fédérale de Lausanne (EPFL) Institute of Chemical Science and Engineering

Table of Contents

1. Supplementary Figures S1–S8	2
2. Supplementary Tables S1–S2	
3. NMR Spectra	

1. Supplementary Figures S1-S6

Supplementary Figure S1. High-resolution mass spectrum (MALDI-ToF, negative-mode) of *cis*-5a-hydro-10b-hydrobenzofuro[2,3-*b*]benzofuran-2,9-dicarboxylic acid **3**.

Supplementary Figure S2. High-resolution mass spectrum (MALDI-ToF, negative-mode) of benzofuro[2,3-*b*]benzofuran-2,9-dicarboxylic acid **2**.

Supplementary Figure S3. ¹H-NMR spectra of the polyamides **PA6B**, **PA9B** and **PA12B** recorded in HFIP/acetone- d^6 . The amide protons of the repeating unit are visible at 5.90–5.92 ppm. The *b* and *c* protons of the heterocyclic benzofurobenzofuran core can only be differentiated in the case of **PA6B**.

Supplementary Figure S4. Second derivative analysis of the IR spectra of the amide I and amide II regions of the polyamides **PA6B**, **PA9B** and **PA12B**.

Supplementary Figure S5. Wide-angle X-ray scattering (WAXS) of the polyamides **PA6B**, **PA9B** and **PA12B**. **PA6B** shows an amorphous halo centered at $2\theta = 21.83^\circ$, as well as a broad diffraction peak at $2\theta = 18.73^\circ$ and 19.10° for **PA9B** and **PA12B**, respectively.

Supplementary Figure S6. Modulated differential scanning calorimetry (M-DSC) of benzofuro[2,3-*b*]benzofuran-2,9-dicarboxylic acid **2**. The observed T_g (220°C) is higher than the one measured with the conventional DSC due to the lower heating rate (1°C/min for M-DSC versus 10°C/min for conventional DSC).

Supplementary Figure S7. TGA of the polyamides PA6B, PA9B and PA12B and the model compound 7 in nitrogen.

ADQ(2)/def2-SVP

TDA-PBE0/def2-SVP

Supplementary Figure S8. Density differences of the brightest transitions (S_0 - S_1 and S_0 - S_5) of dimethyl benzofurobenzofurane dicarboxylate **9** computed at both the ADC(2) level (isodensities = -0.0005 (red) and +0.0005 (blue)) and TDA-PBE0 level (isodensities = -0.0008 (red) and +0.0008 (blue)).

2. Supplementary Tables S1-S2

Table S1. Excitation energies for **9** at the TDA-PBE0/def2-SVP and the ADC(2)/def2-SVP level. Oscillator strengths are reported in parentheses. Note the quantitative agreement between the vertical excitation energies computed at the TDA-PBE0 and ADC(2) levels. To ensure the correct attribution of the character of the brightest states, the relaxed density differences computed at the TDA-PBE0 level are compared to the density differences from the ADC(2) computations (see Supplementary Figure S6).

excitation	PBE0	ADC(2)
S ₁ (vertical)	4.34 eV (0.031)	4.54 eV (0.032)
S ₂ (vertical)	4.46 eV (0.002)	4.61 eV (0.008)
S ₃ (vertical)	4.73 eV (0.009)	4.77 eV (0.001)
S ₄ (vertical)	4.74 eV (0.004)	4.79 eV (0.002)
S_5 (vertical)	4.80 eV (0.345)	5.11 eV (0.604)

Table S2. Crystallographic and refinement data of compounds 6 and 8.

Identification code	6	8
Empirical formula	2(C ₂₂ H ₂₄ N ₂ O ₅), 3(C ₂ H ₆ O)	$C_{22} H_{20} O_6$
Formula weight (g/mol)	931.06	380.38
Temperature (K)	140.00(10)	100.01(10)
Wavelength (Å)	1.54184	1.54184
Crystal system	Triclinic	Triclinic
Space group	РĪ	PĪ
a (Å)	10.1910(3)	8.7557(4)
b (Å)	13.7072(3)	10.3822(4)
c (Å)	19.0724(5)	11.1677(5)
α (°)	90.789(2)	63.052(4)
β (°)	103.313(3)	82.840(4)
γ (°)	109.953(2)	86.270(4)
Volume (Å ³)	2424.57(12)	897.85(8)
Z	2	2
Density (calculated) (Mg/m ³)	1.275	1.407
Absorption coefficient (mm ⁻¹)	0.757	0.850
F(000)	996	400
Crystal size (mm ³)	0.545 x 0.445 x 0.360	0.309 x 0.214 x 0.135
Theta range for data collection (°)	3.448 to 76.154	4.467 to 76.788
Index ranges	-12 ≤ h ≤ 12	$-10 \le h \le 10$
	-9 ≤ k ≤ 17	-10 ≤ k ≤ 13
	-23 ≤ l ≤ 23	$-14 \le l \le 14$
Reflections collected	17613	7574
Independent reflections	9787 [$R_{(int)} = 0.0198$]	3705 $[R_{(int)} = 0.0129]$
Data completeness	99.9 %	99.8 %
Absorption correction	Semi-empirical from equivalents	Gaussian
Max. and min. transmission	1.00000 and 0.30076	0.916 and 0.843
Refinement method	Full-matrix least-squares on F^2	Full-matrix least-squares on F^2
Data / restraints / parameters	9787 / 40 / 664	3705 / 0 / 333
Goodness-of-fit on <i>F</i> ²	1.036	1.041
Final R indices [I>2sigma(I)]	$R_1 = 0.0444$, $wR_2 = 0.1265$	$R_1 = 0.0356$, $wR_2 = 0.0915$
R indices (all data)	$R_1 = 0.0496$, $wR_2 = 0.1322$	$R_1 = 0.0371$, $wR_2 = 0.0927$
Largest diff. peak and hole (e.Å ⁻³)	0.366 and -0.245	0.299 and -0.193

3. NMR Spectra

¹H NMR spectrum (DMSO-*d*⁶, 400 MHz) of **3**

¹H-¹H COSY NMR spectrum (DMSO-*d*⁶) of **3**

¹³C NMR spectrum (DMSO-*d*⁶, 101 MHz) of **3**

¹³C NMR spectrum (DMSO-*d*⁶, 101 MHz) of **4**

¹H NMR spectrum (CDCl₃, 400 MHz) of **5**

¹H NMR spectrum (DMSO-*d*⁶, 400 MHz) of **5**

$^{\rm 13}{\rm C}$ NMR spectrum (CDCl₃, 101 MHz) of ${\bf 5}$

¹H NMR spectrum (DMSO- d^6 , 400 MHz) of **2**

^{13}C NMR spectrum (DMSO- d^6 , 101 MHz) of ${\bf 2}$

¹H NMR spectrum (DMSO-*d*⁶, 400 MHz) of model compound **6** (co-crystals with EtOH)

¹³C NMR spectrum (DMSO-*d*⁶, 101 MHz) of model compound **6** (co-crystals with EtOH)

¹H NMR spectrum (CDCl₃, 400 MHz) of model compound **7**

¹³C NMR spectrum (DMSO-*d*⁶, 101 MHz) of model compound **7**

¹H NMR spectrum (CDCl₃, 400 MHz) of model compound **8**

^{13}C NMR spectrum (DMSO- d^6 , 101 MHz) of model compound ${\bf 8}$

