Supporting Information to

"Impact of Molecular Weight on Electrochemical Properties of Poly(TEMPO methacrylate)."

Kai Zhang,¹ Yuxiang Hu,^{1,2} Lianzhou Wang,^{1,2} Jiyu Fan,³ Michael J. Monteiro,¹ Zhongfan Jia^{1*}

- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane QLD 4072, Australia
- 2. School of Chemical Engineering, University of Queensland, Brisbane QLD 4072, Australia
- Department of Applied Physics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

E-mail: z.jia@uq.edu.au (Z.J.).

Figure S1. ¹H NMR spectrum (400MHz) of 2,2,6,6-tetramethylpiperidin-4-yl methacrylate (TMPM) in DMSO-*d*₆.

Figure S2. ¹³C NMR spectrum (100MHz) of 2,2,6,6-tetramethylpiperidin-4-yl methacrylate (TMPM) in DMSO-*d*₆.

Figure S3. SEC traces of PTMA oxidised from PTMPM by H_2O_2 in methanol, the traces were recorded in THF SEC using polystyrene as standard.

Figure S4. Typical ¹H NMR spectrum (400MHz) of PTMPM₆₆ in CDCl₃.

Figure S5. Comparison of two different oxidation methods to convert $PTMPM_{228}$ to $PTMA_{228}$, (a) SEC traces and (b) the UV-Vis spectra of $PTMA_{228}$ oxidised by H_2O_2 in methanol and *mCPBA* in dichloromethane.

Figure S6. Solubility of PTMA in DMC with 1 M LiPF₆ determined by UV-Vis: (a) Absorption of 4-hydroxyl TEMPO with different concentration in THF, (b) Calibration curve (c) Absorption of PTMA in THF and (d) Solubility of PTMA with different DPs determined by UV-Vis.

Figure S7. Oxidation efficiency determined by EPR: (a) EPR spectra of 4-hydroxyl TEMPO with different concentration in DCM, (b) Calibration curve based on integration of EPR spectra (c) EPR spectra of PTMA with different DPs oxidised from PTMPM by H_2O_2 and (d) Number of radicals per unit vs DP of PTMA determined by EPR.

Figure S8. Oxidation efficiency determined by UV-Vis: (a) Absorption of 4-hydroxyl TEMPO with different concentration in DCM, (b) Calibration curve (c) Absorption of PTMA with different DPs oxidised from PTMPM by H_2O_2 and (d) Number of radicals per unit vs DP of PTMA determined by UV-Vis.

Figure S9. (a) Temperature dependence of the paramagnetic susceptibility χ_P of PTMA₆₆ with both field cooling (FC) and zero-field cooling (ZFC) modes. (b) Temperature dependence of the paramagnetic susceptibility χ_P and its inverse χ_P^{-1} of all PTMA polymers with FC mode. All the measurements carried out at an applied magnetic field strength of 10 KOe.

Figure S10. Cycling property and coulombic efficiency of (a) PTMA₆₆, (b) PTMA₉₆, (c) PTMA₂₂₈, (d) PTMA₄₈₃, and (e) PTMA₇₀₃ as cathode with mass ratio of PTMA/SP carbon/PVdF=0.25/0.65/0.1, charging/discharging at 1C over 300 cycles.

Figure S11. Nyquist plot of PTMA with different DPs as cathode at mass ratio of PTMA/SP carbon/PVdF=0.25/0.65/0.1, and 0.1 M LiPF_6 in DMC as electrolyte.