Supporting Information

Alternating and Random-Sequence Polyesters with Distinct Physical Properties

Chao Peng^a and Abraham Joy^{a,*}

^aDepartment of Polymer Science, The University of Akron, Akron, Ohio 44325, United States

Figure S5. ¹H NMR spectra of 1b

Figure S9. Contact angle of p(A-alt-B)-1 and p(A-ran-B)-1 over 120 seconds

Figure S10. MALDI-MS of p(A-*alt*-B)-1. (The obtained signals correspond to the cyclic alternating polymers. The minor peaks in the spectra were analyzed in Figure S11.)

Figure S11. Enlarged view of the red dashed region in **Figure S10**. The minor distributions were formed by the addition of segment B or segment C to the major products. The formation of segments B and C was probably due to the presence of trace amount of impurities in monomer **2b** (shown in bottom right corner). Segment B could be generated by the reaction of monomer **1a** and trace amount of succinic anhydride ([M+Na]⁺: 123.0). Segment C could originate from trace amount of hydroxyacid monomer ([M+H]⁺: 377.2).

Figure S13. MALDI-MS of p(A-alt-B)-3.

Figure S15. MALDI-MS of p(A-ran-B)-2.

Table S1. Molecular Weight of Random and Sequence-Controlled Copolyesters

entry	polymer	M _n (kDa) ^a	M _w (kDa) ^a	$\frac{1}{2} \frac{1}{M_w/M_n}^a$	Ratio (A:B) ^b
1	p(A- <i>alt</i> -B)-1	27.7	56.0	2.0	49.9:50.1
2	p(A- <i>alt</i> -B)-2	8.2	10.5	1.3	50.0:50.0

3	p(A- <i>alt</i> -B)-3	19.1	38.0	2.0	50.8:49.2
4	p(A- <i>ran</i> -B)-1	27.9	54.2	1.9	48.7:51.3
5	p(A- <i>ran</i> -B)-2	31.1	53.9	1.7	48.5:51.5

^aMolecular weight and polydispersity index were determined by SEC using DMF as the eluent and PS as the standard. ^bThe ratio of the two components was determined by the integration of the ¹H NMR spectra.

Table S2. Water Absorption of p(A-alt-B)-1 and p(A-ran-B)-1 after 12, 24, 36 and 48 h

polymer	$H_2O\%_{12h}$	$H_2O\%_{24h}$	H ₂ O‰ _{36h}	$H_2O\%_{48h}$
p(A- <i>alt</i> -B)-1	4.2±0.9 %	5.3±1.2 %	6.1±1.0 %	6.3±0.9 %
p(A- <i>ran</i> -B)-1	4.1±1.0 %	6.3±1.1 %	6.3±1.1 %	6.4±1.1 %