Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is © The Royal Society of Chemistry 2017

Supporting Information

CO2-stimulated vesicle-to-lamella transition of ABC miktoarm star

terpolymer assemblies

Meng Huo^{a,b}, Haotian Du^a, Min Zeng^a, Long Pan^c, Tommy Fang^a, Xuming Xie^c, Yen Wei^{*b} and Jinying Yuan^{*a}

^aKey Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China. E-mail: yuanjy@mail.tsinghua.edu.cn

^bKey Lab of Bioorganic Phosphorus Chemistry & Chemical Biology of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China. E-mail: weiyen@tsinghua.edu.cn

^cDepartment of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China

Fig. S1 ¹H NMR spectra of a) PEG-(OH)-N₃, b) PS-NEt₂, c) PEG-(OH)-PS, d) μ-PEG-PS-PDEA^a.

^aThe DP of PDEA was calculated using the integration of the peak a and peak f in Fig. S1d according to the following equation:

$$\mathrm{DP}_{PDEA} = \frac{45 \times 4}{2} \times \frac{I_f}{I_a}$$

where $I_{\rm f}$ represents the integration of the peak f and $I_{\rm a}$ represents the integration of the peak a.

According to the calculation the *DP*s of PDEA of μ -PEG-PS-PDEA were 18 (μ -PEG-PS-PDEA_{3.3k}), 37 (μ -PEG-PS-PDEA_{6.8k}), 50 (μ -PEG-PS-PDEA_{9.3k}), 66 (μ -PEG-PS-PDEA_{12.2k}), and 135 (μ -PEG-PS-PDEA_{25.0k}), respectively.

Fig. S2 GPC traces of PEG-(OH)-N₃, PS-NEt₂ and PEG-(OH)-PS.

Fig. S3 GPC traces of PEG-(Br)-PS and μ -PEG-PS-PDEA with different PDEA chain lengths.

Fig. S4 DLS characterization of $\mu\text{-PEG-PS-PDEA}_{9.3k}$ before and after CO_2 purging.

Fig. S5 SEM characterization of μ -PEG-PS-PDEA_{9.3k} a), b) before and c) after CO₂ purging.

Fig. S6 TEM images of $\mu\text{-PEG-PS-PDEA}_{9.3k}$ assemblies after CO $_2$ stimulation. No staining agent was used.

Fig. S7 SEM characterization of μ -PEG-PS-PDEA_{12.2k} a), b) before and c) after CO₂ purging.

Fig. S8 DLS characterization of $\mu\text{-PEG-PS-PDEA}_{12.2k}$ before and after CO_2 purging.

Fig. S9 TEM images of $\mu\text{-PEG-PS-PDEA}_{\text{12.2k}}$ assemblies after CO $_2$ stimulation. No staining agent was used.

Fig. S10 Small vesicles were observed in the TEM image of $\mu\text{-}\mathsf{PEG}\text{-}\mathsf{PS}\text{-}\mathsf{PDEA}_{\mathrm{25k}}$ assemblies.

Fig. S11 DLS characterization of μ -PEG-PS-PDEA_{25k} before and after CO₂ purging. a) Number-averaged size distribution. b) Intensity-averaged size distribution.

Fig. S12 SEM characterization of μ -PEG-PS-PDEA_{25k} a), b), c) before and d) after CO₂ purging.

Fig. S13 TEM images of μ -PEG-PS-PDEA_{25k} assemblies after CO₂ stimulation. No staining agent was used.

Fig. S14 a) DLS characterization of μ -PEG-PS-PDEA_{3.3k} before and after CO₂ purging. TEM characterization of μ -PEG-PS-PDEA_{3.3k} b) before and c) after CO₂ purging. d) HRTEM image of the HHH structure of μ -PEG-PS-PDEA_{3.3k} assemblies.

Fig. S15 a) SEM and b) AFM characterization of μ -PEG-PS-PDEA_{3.3k} before CO₂ purging. c), d) SEM characterization of μ -PEG-PS-PDEA_{3.3k} after CO₂ purging.

Fig. S16 TEM characterization of μ -PEG-PS-PDEA_{6.8k} a), b) before and c), d) after CO₂ purging.

Fig. S17 DLS characterization of $\mu\text{-PEG-PS-PDEA}_{\rm 6.8k}$ before and after CO_2 purging.

Fig. S18 SEM characterization of $\mu\text{-PEG-PS-PDEA}_{6.8k}$ a) before and b) after CO_2 purging.

Fig. S19 pH titration curve of the μ -PEG-PS-PDEA_{6.8k} star terpolymer.

Sample	Before CO ₂	After CO_2 purging/mV
	purging/mV	
μ -PEG-PS-PDEA _{3.3k}	+45.7	+57.8
μ -PEG-PS-PDEA _{6.8k}	+22.7	+34.9
μ -PEG-PS-PDEA _{9.3k}	+36.0	+49.4
μ -PEG-PS-PDEA _{12.2k}	+62.2	+61.4 ^a
μ -PEG-PS-PDEA _{25k}	+51.8	+59.7

Table S1 Zeta potential of μ -PEG-PS-PDEA assemblies before and after CO₂ purging.

^aThe zeta potentials were obtained using Malvern Zetasizer Nano ZS90, which measures the electrophoresis mobility and calculates the zeta potential according to the Henry equation ($U_E = \frac{2\epsilon\zeta}{3\eta}g(\kappa a)$, where U_E is the electrophoretic mobility, ε is the dielectric constant, ζ is the zeta potential, η is the viscosity of the dispersion, and $g(\kappa a)$ is the Henry coefficient). However, the classic electrokinetic theory that the commercial instrument adopted ignores the influence of the size and shape of colloids to the electrophoretic mobility. In fact, the size and shape of colloids were found to have significant impacts to the test outcome, where colloids with larger sizes were found to have higher electrophoretic mobility.^{51, 52} As for the CO₂-responsive μ -PEG-PS-PDEA_{12.2k} assemblies, the size of decreased from 1100 nm

to 400 nm after purging with CO₂, and their morphology evolved from sphere to nano-ribbon, which accounts for the inconspicuous zeta potential trend observed.

References

S1. L. Vorwerg, M. Antonietti and K. Tauer, Colloids Surf., A, 1999, 150, 129–135.

S2. M. T. Roy, M. Gallardo and J. Estelrich, J. Colloid Interface Sci., 1998, 206, 512–517.