Supporting Information

The Hydrolytic Behavior of *N,N'*-(dimethylamino)ethyl Acrylate Functionalized Polymeric Stars

Marianne S. Rolph, Anaïs Pitto-Barry, Rachel K. O'Reilly

Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, U.K.

Contents

1.	Materials and Methods	2
	Synthetic Procedures	2
	Hydrolysis Analysis	4
2.	SEC and ¹ H NMR spectroscopic analysis of short armed PEGA ₉₈ particles	4
	Figure S1. SEC analysis and ¹ H NMR spectrum of PEGA ₉₈ arms (1)	4
	Figure S2. Triple detection SEC analysis of PEGA ₉₈ armed particles 2-20 , 2-15 , and 2-10 with the Mark-Houwink curve overlaid on the molecular weight distribution	ne 5
3.	Size analysis of short armed PEGA98 particles	5
	Figure S3. Size distribution of 2-15	5
	Table S1. Size distribution analysis	6
4.	SEC and ¹ H NMR spectroscopic analysis of PHEA ₁₀₄	6
	Figure S4. SEC analysis and ¹ H NMR spectrum of PHEA ₁₀₄ arms (7)	6
5.	Analysis of HEA ₁₀₄ armed particles	7
	Figure S5. Triple detection SEC analysis of PHEA ₁₀₄ armed particles 8-20 , 8-15 , and 8-10 with t Mark-Houwink curve overlaid on the molecular weight distribution	he 7
	Figure S6. Size distribution of 8-20, 8-15 and 8-10	7
6.	Hydrolysis analysis of PEGA armed particles by DLS	8
	Figure S7. Size distribution of 2-20 at 25 °C and 50 °C before hydrolysis, and before and after hydrolysis at 50 °C	8
7.	SEC analysis of medium and long armed PEGA particles	8
	Figure S8. SEC analysis of medium and long PEGA homopolymers (3 and 5 respectively) and the corresponding stars (4 and 6 respectively)	neir 8

8.	Size analysis of medium and long armed PEGA particles	9
	Figure S9. Size distribution of 4 and 6	9
9.	Hydrolysis analysis of PHEA ₁₀₄ armed particles by ¹ H NMR spectroscopy	9
	Figure S10. Hydrolysis analysis of PHEA armed particles 8-20 , 8-15 and 8-10 , hydrolyzed in D ₂ ⁴ at 25 °C	0 9
10	Enzymatic determination of [DMAE]	9
	Figure S11. Calibration curve	10
	Equation S2: Calibration for the initial rate of rise at $\lambda = 405$ nm vs. [DMAE]	. 10

1. Materials and Methods

Synthetic Procedures

The PEGA arms and subsequent star polymers were synthesized according to the procedure outlined in the main paper. Characterization data for polymers 1, 2-20, 7 and 8-20 is reported in the main paper.

 $PEGA_{148}(3)$

¹H NMR (CDCl₃): δ (ppm) 4.16 (br s, OCH₂CH₂), 3.47-3.89 (m, O(CH₂CH₂)₈ and SCH₂(CH₂)₉), 3.38 (s, CH₂OCH₃), 1.25-2.29 (m, CH₂ backbone, CH₂(CH₂)₁₀ CTA), 0.88 (t, 3H, (CH₂)₁₀CH₃, ³J_{H-H} = 6.0 Hz). $M_{n, SEC}$ = 46.2 kDa, D_{M} = 1.64.

*PEGA*₂₈₈(**5**)

¹H NMR (CDCl₃): δ (ppm) 4.17 (br s, OCH₂CH₂), 3.47-3.82 (m, O(CH₂CH₂)₈ and SCH₂(CH₂)₉), 3.38 (s, CH₂OCH₃), 1.26-2.67 (m, CH₂ backbone, CH₂(CH₂)₁₀ CTA), 0.88 (t, 3H, (CH₂)₁₀CH₃, ³J_{H-H} = 6.1 Hz). $M_{n, SEC}$ = 47.0 kDa, D_{M} = 1.52.

15% Crosslinked Polymer (2-15)

¹H NMR (CDCl₃): δ (ppm) 4.17 (br s, OCH₂CH₂O, OCH₂CH₂O(CH₂CH₂O)₇, and CH₂CH₂N), 3.47-3.70 (m, O(CH₂CH₂)₈, SCH₂(CH₂)₉ and OCH₂CH₂O), 3.32 (s, CH₂OCH₃), 2.54 (br s, CH₂N), 2.27 (br s, N(CH₃)₂), 1.25-2.03 (m, CH₂ backbone, CH₂(CH₂)₁₀ CTA), 0.88 (t, 3H, (CH₂)₁₀CH₃, ³J_{H-H} = 6.2 Hz). $M_{n, SEC}$ = 39.9 kDa, D_{M} = 2.88. D_{h} = 9 nm.

¹H NMR (CDCl₃): δ (ppm) 4.18 (br s, OCH₂CH₂O, OCH₂CH₂O(CH₂CH₂O)₇ and CH₂CH₂N), 3.45-3.80 (m, O(CH₂CH₂)₈, SCH₂(CH₂)₉ and OCH₂CH₂O), 3.32 (s, CH₂OCH₃), 2.62 (br s, CH₂N), 2.23 (br s, N(CH₃)₂), 1.29-2.06 (m, CH₂ backbone, CH₂(CH₂)₁₀ CTA), 0.90 (t, 3H, (CH₂)₁₀CH₃, ³J_{H-H} = 6.0 Hz). $M_{n, SEC}$ = 43.8 kDa, D_{M} = 2.25. D_{h} = 10 nm.

20% Crosslinked Polymer (4)

¹H NMR (CDCl₃): δ (ppm) 4.16 (br s, OCH₂CH₂, OCH₂CH₂O(CH₂CH₂O)₇ and CH₂CH₂N), 3.47-3.82 (m, O(CH₂CH₂)₈, SCH₂(CH₂)₉ and OCH₂CH₂O), 3.38 (s, CH₂OCH₃), 2.54 (br s, CH₂N), 2.27 (br s, N(CH₃)₂), 1.25-2.10 (m, CH₂ backbone, CH₂(CH₂)₁₀ CTA), 0.88 (t, 3H, (CH₂)₁₀CH₃, ³J_{H-H} = 6.2 Hz). $M_{n, SEC}$ = 66.3 kDa, D_{M} = 1.73. D_{h} = 11 nm.

20% Crosslinked Polymer (6)

¹H NMR (CDCl₃): δ (ppm) 4.12 (br s, OCH₂CH₂, OCH₂CH₂O(CH₂CH₂O)₇ and CH₂CH₂N), 3.41-3.73 (m, O(CH₂CH₂)₈, SCH₂(CH₂)₉ and OCH₂CH₂O), 3.24 (s, CH₂OCH₃), 2.57 (br s, CH₂N), 2.15 (br s, N(CH₃)₂), 1.13-2.00 (m, CH₂ backbone, CH₂(CH₂)₁₀ CTA), 0.78 (t, 3H, (CH₂)₁₀CH₃, ³J_{H-H} = 6.2 Hz). $M_{n, SEC}$ = 43.6 kDa, D_{M} = 1.81. D_{h} = 11 nm.

The HEA armed star polymers were synthesized according to the procedure outlined in the paper. *15% Crosslinked Polymer* (8-15)

¹H NMR (DMSO-d₆): δ (ppm) 4.73 (br s, CH₂OH), 4.01 (br s, OCH₂CH₂OH and OCH₂CH₂O), 3.31 (br s, OCH₂CH₂OH, SCH₂(CH₂)₉ and OCH₂CH₂O), 2.49 (br s, CH₂N), 2.15 (br s, N(CH₃)₂), 1.58-1.79 (m, CH₂ backbone, CH₂(CH₂)₁₀ CTA),), 0.87 (br s, 3H, (CH₂)₁₀CH₃). $M_{n, SEC} = 27.8$ kDa, $D_M = 1.25$. $D_h = 14$ nm.

10% Crosslinked Polymer (8-10)

¹H NMR (DMSO-d₆): δ (ppm) 4.73 (br s, CH₂OH), 4.00 (br s, OCH₂CH₂OH and OCH₂CH₂O), 3.34 (br s, OCH₂CH₂OH, SCH₂(CH₂)₉ and OCH₂CH₂O), 2.44 (br s, CH₂N), 2.25 (br s, N(CH₃)₂), 1.39-1.90 (m, CH₂ backbone, CH₂(CH₂)₁₀ CTA),), 0.88 (br s, 3H, (CH₂)₁₀CH₃). $M_{n, SEC} = 24.9$ kDa, $D_M = 1.31$. $D_h = 25$ nm.

Typical procedure for the chain extension of PEGA with DMAEA and MA

PEGA macro-CTA (1.0 eq.), DMAEA (200 eq.) and MA (40 eq.) were dissolved in 1,4-dioxane together with radical initiator AIBN (0.2 eq.). Following four freeze-pump-thaw cycles the ampule was refilled with nitrogen and the mixture heated to 70 °C for 24 hours (67% conversion). The reaction was quenched by immersion in liquid nitrogen and purified by precipitation into 5:1 hexane/ diethyl ether, affording a viscous pale yellow liquid (57%). ¹H NMR (CDCl₃): δ (ppm) 4.15 (br s, OCH₂CH₂), 3.55-3.65 (m, OCH₃, O(CH₂CH₂)₈, and SCH₂(CH₂)₉), 3.38 (s, CH₂OCH₃), 2.54 (br s, CH₂N), 2.27 (br s, N(CH₃)₂), 1.25-1.89 (m, CH₂ backbone, CH₂(CH₂)₁₀ CTA), 0.87 (t, 3H, (CH₂)₁₀CH₃, ³J_{H-H} = 6.1 Hz). $M_{n, SEC}$ = 33.5 kDa, \mathcal{D}_{M} = 1.70.

Hydrolysis Analysis

Polymers (30 mg,) were dissolved in D_2O (0.6 mL) and stirred for 5 minutes. The solution was transferred to an NMR tube. Measurements were taken at various time intervals at both 25 °C and 50 °C. The percentage hydrolysis was calculated according to Equation S1, using the integrals for the CH_2N of the dimethylethanolamine and the corresponding polymer peak at 3.25 and 3.05 ppm for PEGA armed particles, and 2.85 and 2.64 ppm for HEA particles.

Equation S1: Hydrolysis Determination (shown for PEGA particles) % hydrolysis = $\frac{I_{3.25 ppm}}{I_{3.25 ppm}}$

$$I_{3.25 \, ppm} + I_{3.05 \, ppm}$$

2. SEC and ¹H NMR spectroscopic analysis of short armed PEGA₉₈ particles

Figure S1. SEC analysis (DMF with 5 mM NH₄BF₄ eluent, with PMMA standards) and ¹H NMR spectrum (400 MHz, CDCl₃) of PEGA₉₈ arms (1), polymerized in 1,4-dioxane.

Figure S2. Triple detection SEC analysis of PEGA₉₈ armed particles **2-20** (a), **2-15** (b), and **2-10** (c) with the Mark-Houwink curve overlaid on the molecular weight distribution (DMF with 5 mM NH₄BF₄ eluent, with PMMA standards). Red line is the molecular weight distribution, black data points are the Mark-Houwink plot and the green line is the linear fit of the Mark-Houwink plot.

3. Size analysis of short armed PEGA₉₈ particles

Figure S3. Size distribution, by number, intensity and volume of **2-15**, in chloroform at 5 mg /mL at 25 °C, obtained by DLS (detection angle = 173 °).

Polymer	$D_{\rm h}$ at 25 °C (nm)			$D_{\rm h}$ at 50 °C (nm)			
· -	By Number	By Volume	PD	By Number	By Volume	PD	
2-20	11	14	0.347	12	15	0.383	
2-15	12	12	0.460	12	14	0.327	
2-10	9	12	0.278	12	13	0.309	

Table S1. Size distribution analysis, by number and volume, obtained by DLS (detection angle = 173°) in chloroform at 5 mg/mL. PD is given in brackets.

Figure S4. SEC analysis (DMF with 5 mM NH₄BF₄ eluent, with PMMA standards) and ¹H NMR spectrum (400 MHz, CDCl₃) of PHEA₁₀₄ arms (**7**), polymerized in 1,4-dioxane.

4. SEC and ¹H NMR spectroscopic analysis of PHEA₁₀₄

Figure S5. Triple detection SEC analysis of PHEA₁₀₄ armed particles **8-20** (a), **8-15** (b), and **8-10** (c) with the Mark-Houwink curve overlaid on the molecular weight distribution (DMF with 5 mM NH₄BF₄ eluent, with PMMA standards). Red line is the molecular weight distribution, black data points are the Mark-Houwink plot and the green line is the linear fit of the Mark-Houwink plot.

Figure S6. Size distribution of **8-20** (a), **8-15** (b) and **8-10** (c) in DMSO at 5 mg/mL at 25 °C, obtained by DLS (detection angle = 173°).

6. Hydrolysis analysis of PEGA98 armed particles by DLS

Figure S7. Size distribution, by number, of **2-20** at 5 mg /mL in chloroform. (a) at 25 °C and 50 °C before hydrolysis, and (b) before and after hydrolysis at 50 °C, obtained by DLS (detection angle = 173 °).

7. SEC analysis of medium and long armed PEGA particles

Figure S8. SEC analysis (DMF with 5 mM NH_4BF_4 eluent, with PMMA standards) of medium and long PEGA homopolymers (3 and 5 respectively) and their corresponding stars (4 and 6 respectively).

8. Size analysis of medium and long armed PEGA particles

Figure S9. Size distribution of **4** (a) and **6** (b) in chloroform at 5 mg /mL at 25 °C, obtained by DLS (detection angle = 173°).

9. Hydrolysis analysis of PHEA104 armed particles by ¹H NMR spectroscopy

Figure S10. Hydrolysis analysis of PHEA₁₀₄ armed particles 8-20, 8-15 and 8-10, hydrolyzed in D₂O at 25 °C. Error bars produced from the standard deviation of 2 repeats.

10. Enzymatic determination of [DMAE]

For the production of the calibration curve, solutions of DMAE of varying concentrations (0-150 μ M in 18.2 M Ω .cm water) were produced. 50 μ L samples of each concentration (3 repeats) were added to a 96 well plate, and *p*-NPBA (4 mM in DMSO) and choline oxidase (7.5 μ M in Tris-HCl pH8 buffer) were added and the assay

analyzed for 10 hours, monitoring the initial rate of rise for the UV absorbance at 405 nm, attributed to the *p*-nitrophenol produced. Fitting of the resultant data produced a calibration of:

Figure S11. Calibration curve for the initial rate of rise at $\lambda = 405$ nm vs. concentration of DMAE

Equation S2: Calibration for the initial rate of rise at 405 nm vs. [DMAE]

Rate of Rise =
$$826.41 + (-712.02e^{(-0.04x)})$$

For analysis of polymer samples, preparation of the 96 well plate was as follows: at each time point a 250 μ L aliquot of the polymer solution (50 mg/ml in 18.2 M Ω .cm water) was purified twice through removal of the polymer (Corning Spin-X UF concentrators, 500 μ L, 5kDa MWCO) and the resultant supernatant stored in the freezer. Upon completion of sampling, 50 μ L samples of each time point (3 repeats) were added to a 96 well plate, and *p*-NPBA(4 mM in DMSO) was added. Following addition of all the samples and *p*-NPBA solution, choline oxidase (7.5 μ M in Tris-HCl pH8 buffer) was added and the plate analyzed for 10 hours.