RAFT/MADIX emulsion copolymerization of vinyl acetate and *N*-vinylcaprolactam: towards waterborne physically crosslinked thermoresponsive particles

Laura Etchenausia, Abdel Khoukh, Elise Deniau Lejeune, Maud Save*

IPREM, Equipe de Physique et Chimie des Polymères, CNRS, University of Pau & Pays Adour, UMR 5254, ,2 avenue du Président Angot, Pau, F-64053, France

* Corresponding author: maud.save@univ-pau.fr

ELECTRONIC SUPPLEMENTARY INFORMATION

Electronic supplementary information (ESI) available: Preparation of PEG-X macro-chain transfer agent and ¹H NMR spectra; Overlay of the UV-visible (λ = 355 nm) and refractometer (RI) traces of the SEC chromatograms in THF for the PEG-X polymer; ¹H NMR and ¹³C NMR spectra of the dialyzed and freeze-dried PEG-*b*-P(VAc-*co*-VCL) diblock copolymers; Pictures of the coagulum and of the dispersion recovered at the end of the emulsion copolymerization of VAc and VCL using non-reactive PEG-OH as stabilizer; Size exclusion chromatograms of PEG-X and PEG-*b*-P(VAc_{0.17}-*co*-VCL_{0.83}) copolymer; DOSY NMR spectra of the dialyzed PEG-*b*-P(VAc_{0.17}-*co*-VCL_{0.83}) copolymer and initial PEG-OH homopolymer; Comparison of ¹³C NMR spectra of the VAc/VCL copolymers synthesized either by bulk polymerization or by emulsion polymerization; Transmittance at λ =500 nm versus temperature for aqueous solution of PEG-X; ¹H NMR spectra before and after hydrolysis of PEG-*b*-P(VAc_{0.17}-*co*-VCL_{0.83}) copolymer; FTIR spectra before and after hydrolysis of PEG-*b*-P(VAc_{0.17}-*co*-VCL_{0.83}) copolymer; DOSY NMR spectra of of PEG-*b*-P(VAc_{0.05}-*co*-VCL_{0.53}) copolymer; SPIR spectra before and after hydrolysis of PEG-*b*-P(VAc_{0.17}-*co*-VCL_{0.83}) copolymer; DOSY NMR spectra before and after hydrolysis of PEG-*b*-P(VAc_{0.17}-*co*-VCL_{0.83}) copolymer; DOSY NMR spectra before and after hydrolysis of PEG-*b*-P(VAc_{0.17}-*co*-VCL_{0.83}) copolymer; DOSY NMR spectra before and after hydrolysis of PEG-*b*-P(VAc_{0.17}-*co*-VCL_{0.83}) copolymer; DOSY NMR spectra before and after hydrolysis of PEG-*b*-P(VAc_{0.17}-*co*-VCL_{0.83}) copolymer; DOSY NMR spectra before and after hydrolysis of PEG-*b*-P(VAc_{0.05}-*co*-VA_{0.42}-*co*-VCL_{0.53}) copolymers after hydrolysis.

Scheme 1. Preparation of PEG-X macro-chain transfer agent.

Figure S1. ¹H NMR spectra in CDCl₃ of the initial PEG-OH and the precipitated derivatized PEG-Br and PEG-X.

The first incorporation of the 2-bromopropionyl end-group onto PEG-OH is confirmed by the presence of the corresponding methine and methyl groups (respectively e' at 4.3 ppm and f' at 1.8 ppm in ¹H NMR (**Figure S1**)). In the second step, the appearance of new peaks characteristics of the xanthogenate end-group at 1.3 ppm (methyl protons h in **Figure S1**) and 4.6 ppm (methylene protons g in **Figure S1**), as well as the shift of the methyl protons f' from 1.8 ppm in PEG-Br to

1.5 ppm in PEG-X (f'' in Figure S1), confirm the effective preparation of the xanthate-terminated PEG.

Figure S2. Overlay of the UV-visible ($\lambda = 355$ nm) and refractometer (RI) traces of the SEC chromatograms in THF for the PEG-X polymer.

Figure S3. (a) ¹H NMR spectrum in acetone- d_6 of the crude solution (t = 5 h 30 min) of VAc/VCL emulsion copolymerization mediated by PEG-X for polymerization carried out with $f_{\text{VAc},0} = 0.5$; (b) ¹H NMR spectrum in DMSO- d_6 of the dialyzed and freeze-dried PEG-*b*-P(VAc_{0.47}-*co*-VCL_{0.53}).

Figure S4. ¹³C NMR spectrum in CDCl₃ of the dialyzed and freeze-dried PEG-*b*-P(VAc_{0.47}-*co*-VCL_{0.53}).

Figure S5. Pictures of the coagulum (left) and of the dispersion (right) recovered at the end of the emulsion copolymerization of VAc and VCL using non-reactive PEG-OH as stabilizer (expt 3 in **Table 1** of the article).

Figure S6. Size exclusion chromatograms in THF: PEG-X (full line) and PEG-*b*-P(VAc_{0.17}-*co*-VCL_{0.83}) (expt 1 in **Table 2** of the article) copolymer synthesized by RAFT/MADIX emulsion polymerization.

Figure S7. DOSY NMR spectra in DMSO- d_6 of: (a) the dialyzed PEG-*b*-P(VAc_{0.17}-*co*-VCL_{0.83}) copolymer synthesized by RAFT/MADIX emulsion polymerization (expt 1 in **Table 2** of the article); (b) Initial PEG-OH homopolymer.

(A)

Figure S8. Comparison of ¹³C NMR spectra in CDCl₃ of the VAc/VCL copolymers synthesized either by bulk polymerization (see reference 1, precipitated prior to analysis, black spectra) or by emulsion polymerization (green spectra for dialyzed and freeze-dried copolymers). (A) PEG-*b*-P(VAc_{0.47}-*co*-VCL_{0.53}) (expt 2 in **Table 1**) and P(VAc_{0.53}-*co*-VCL_{0.47}) (from reference 1) copolymers; (B) PEG-*b*-P(VAc_{0.17}-*co*-VCL_{0.83}) (expt 1 in **Table 1** of the article) and P(VAc_{0.19}-*co*-VCL_{0.81}) (from reference 1) copolymers. Residual trioxane (internal standard used for VAc/VCL copolymerizations) and diethyl ether (solvent of precipitation) are marked by crosses in the spectra of the copolymers synthesized in bulk.

Figure S9. Transmittance at λ =500 nm versus temperature for aqueous solution of PEG-xanthate macrochain transfer agent. Polymer concentration of 3 g.L⁻¹ (Heating cycle).

Figure S10. ¹H NMR spectra in DMSO- d_6 at 80°C of dialyzed (M_w cut-off: 3500 Da) and freeze-dried PEG-*b*-P(VAc_{0.17}-*co*-VCL_{0.83}) (expt 1 in **Table 1** of the article) copolymer. Blue spectrum: before hydrolysis, black spectrum: after hydrolysis.

Figure S11. FTIR spectra before (blue) and after (black) hydrolysis of PEG-*b*-P(VAc_{0.17}-*co*-VCL_{0.83}) copolymer.

Figure S12. DOSY NMR spectrum (in DMSO- d_6) of (A) PEG-b-P(VAc_{0.03}-co-VA_{0.14}-co-VCL_{0.83}) and (B) PEG-b-P(VAc_{0.05}-co-VA_{0.42}-co-VCL_{0.53}) copolymers after hydrolysis.

(B)

Reference

1. Etchenausia, L.; Rodrigues, A. M.; Harrisson, S.; Deniau Lejeune, E.; Save, M. *Macromolecules* **2016**, 49, 6799-6809.