# SUPPORTING INFORMATION

# Polymers from sugars and CO<sub>2</sub>: ring-opening polymerisation and copolymerisation of cyclic carbonates derived from 2-deoxy-D-ribose

Georgina L. Gregory, Gabriele Kociok-Köhn and Antoine Buchard\*

Department of Chemistry, Centre for Sustainable Chemical Technologies, University of Bath, Claverton Down, Bath BA2 7AY, UK

#### Email: a.buchard@bath.ac.uk

#### **Table of Contents**

| 1.  | NMR Spe                              | ctra                                                        | 2  |
|-----|--------------------------------------|-------------------------------------------------------------|----|
| 2.  | Conversi                             | on versus Time for homopolymerisation of 1 $lpha$           | 12 |
| 3.  | $\mathbf{M}_{n}$ and $\mathbf{D}$    | versus conversion                                           | 12 |
| 4.  | Reactivity                           | y Ratios                                                    | 13 |
| 5.  | 1β and TMC copolymerisation kinetics |                                                             | 14 |
| 6.  | SEC Trac                             | es                                                          | 15 |
| 7.  | MALDI-To                             | oF Mass Spectrometry                                        | 17 |
| 8.  | TGA-MS.                              |                                                             | 19 |
| 9.  | Selected                             | DSC Traces                                                  | 19 |
| 10. | Powder D                             | Diffraction                                                 | 21 |
| 11. | DFT Calc                             | ulations                                                    | 21 |
| 1   | 1.1 Initi                            | ation Step in the ROP of $1\alpha$ , $1\beta$ and TMC       | 21 |
| 1   | 1.2 Mor                              | nomer Ring Strain                                           | 25 |
|     | 11.2.1                               | Thermodynamics of ring-opening with MeOH/ <sup>i</sup> PrOH | 25 |
|     | 11.2.2                               | Isodesmic reaction with dimethylcarbonate                   | 26 |
| 12. | 12. Single Crystal X-Ray Structures  |                                                             |    |
| 13. | Reference                            | es                                                          |    |

#### 1. NMR Spectra



Fig. S1  $^1\text{H}$  NMR spectrum (400 MHz, CDCl\_3) of  $1\alpha.$ 





Fig. S4 COSY of  $1\alpha$  in CDCl<sub>3</sub>.



Fig. S6 <sup>1</sup>H NMR spectrum (400 MHz, CDCl<sub>3</sub>) of 1β.





Fig. S8 DEPT135 of  $1\beta$  in CDCl3.



Fig. S9 COSY of  $1\beta$  in CDCl<sub>3</sub>.



Fig. S10 HSQC of  $1\beta$  in CDCl<sub>3</sub>.



**Fig. S11** Complete <sup>13</sup>C{<sup>1</sup>H} NMR spectrum (400 MHz, HFIP-d<sub>2</sub>) of poly( $1\alpha$ ). Small additional resonances are assigned to unreacted monomer and benzoic acid used to quench the polymerisation.



**Fig. S12** <sup>1</sup>H NMR spectrum (400 MHz, CDCl<sub>3</sub>) of poly(TMC-*co*-47mol%-**1** $\alpha$ ):  $M_{n, NMR}$  = 7320 g mol<sup>-1</sup> (linear polymer: 25 **1** $\alpha$  and 28 TMC repeat units),  $M_{n,SEC}$  = 6380 g mol<sup>-1</sup> ( $\oplus$  1.19),  $M_{n,calc}$  = 6870 g mol<sup>-1</sup> (Table 1, Entry 2).



Fig. S13 COSY spectrum (400 MHz, CDCl<sub>3</sub>) of poly(TMC-co-47mol%-1 $\alpha$ ).



Fig. S14 HSQC of poly(TMC-co-47mol%-1 $\alpha$ ).



**Fig. S16** DEPT135 of poly(TMC-*co*-47mol%-**1**α).



Fig. S17 DOSY Spectra (CDCl<sub>3</sub>) of poly(TMC-co-47mol%-1α).



**Fig. S18** <sup>1</sup>H NMR spectrum (400 MHz, CDCl<sub>3</sub>) of poly(TMC-*co*-32mol%-**1**β): *M*<sub>n, SEC</sub> = 43 200 mol<sup>-1</sup> (Đ 1.39).





2. Conversion versus Time for homopolymerisation of 1α

**Fig. S20** Conversion of  $1\alpha$  as a function of time for a homopolymerisation carried out at rt, [M]<sub>0</sub> = 5 mol L<sup>-1</sup> in CH<sub>2</sub>Cl<sub>2</sub> and [M]<sub>0</sub>: [TBD]<sub>0</sub>: [BnOH]<sub>0</sub>= 1000:1:1. Conversions were determined by <sup>1</sup>H NMR spectroscopy (CDCl<sub>3</sub>) from aliquots quenched with benzoic acid.



#### 3. Mn and Đ versus conversion

**Fig. S21** Linear increase in  $M_n$  with monomer conversion whilst maintaining a relatively narrow dispersity ( $\theta < 1.2$ ) for a copolymerisation with **1** $\alpha$ : TMC feed ratio of 50:50, 1000:1:20 [M]<sub>0</sub>:[TBD]0:[BnOH]<sub>0</sub>, [Mt]<sub>0</sub> = 5 mol L<sup>-1</sup> in CH<sub>2</sub>Cl<sub>2</sub> at rt. Monomer conversion was determined by integration of the <sup>1</sup>H NMR spectra of aliguots taken at specific times and quenched with benzoic

acid. For these aliquots,  $M_n$  and  $\tilde{D}$  were estimated by SEC (RI detector) with CHCl<sub>3</sub> eluent *versus* polystyrene standards.

#### 4. Reactivity Ratios

Polymerisations were carried out at rt with  $[M_t]_0$ :  $[TBD]_0$ :  $[BnOH]_0$  ratio of 1000:1:1 and  $[M_t]_0 = 5 \text{ mol } L^{-1}$  in CH<sub>2</sub>Cl<sub>2</sub> for different feed ratios of **1** $\alpha$  and TMC ( $f_\alpha$  and  $f_{TMC}$ ). Polymerisations were quenched below 15% monomer conversion (<10 minutes) and the copolymer compositions of **1** $\alpha$  and TMC ( $F_\alpha$  and  $F_{TMC}$ ) determined by <sup>1</sup>H NMR spectroscopy.

G=H $r_{TMC}$  - $r_{\alpha}$ 



Fig. S22 Calculation of reactivity ratios:  $r_{\alpha}$  and  $r_{TMC}$  using the Finemann-Ross method.

#### 5. 1β and TMC copolymerisation kinetics



**Fig. S23** Monomer Conversion versus time for the copolymerisation of **1** $\beta$  and TMC under the following reaction conditions:  $f_\beta/f_{TMC} = 50/50$ ,  $[M_t]_0 = 5$  mol L<sup>-1</sup> in CH<sub>2</sub>Cl<sub>2</sub>, [**1** $<math>\beta$ +TMC]\_0: [TBD]<sub>0</sub>: [BnOH]<sub>0</sub> 1000:1:1, aliquots were taken at specific times, quenched with excess benzoic acid and monomer conversion determined by integration of the <sup>1</sup>H NMR spectra (CDCl<sub>3</sub>).



**Fig. S24** Kinetic plot for the copolymerisation of **1** $\beta$  and TMC under the following reaction conditions:  $f_{\beta}/f_{TMC} = 50/50$ ,  $[M_t]_0 = 5$  mol L<sup>-1</sup> in CH<sub>2</sub>Cl<sub>2</sub>,  $[\mathbf{1}\beta+TMC]_0$ :  $[TBD]_0$ :  $[BnOH]_0 = 1000:1:1$ , aliquots were taken at specific times, quenched with excess benzoic acid and monomer conversion determined by integration of the <sup>1</sup>H NMR spectra (CDCl<sub>3</sub>).

#### 6. SEC Traces



Fig. S25 SEC trace (RI detector *versus* PS standards, CHCl<sub>3</sub> eluent) of poly(TMC- $co-66mol\%-1\alpha$ ) from Table 1, Entry 1.



**Fig. S26** SEC trace (RI detector *versus* PS standards, CHCl<sub>3</sub> eluent) of poly(TMC-*co*-54mol%-1α) from Table 1, Entry 4.



**Fig. S27** SEC trace (RI detector *versus* PMMA standards, HFIP eluent) of poly( $1\alpha$ ) from Table 2, Entry 1. Peak 1 corresponds to an  $M_n$  of 25 600 g mol<sup>-1</sup> ( $\overline{D}$  1.41) and peak 2 to  $M_n$  1810 g mol<sup>-1</sup> ( $\overline{D}$  1.10).



**Fig S28** SEC trace (RI detector *versus* PS standards, CHCl<sub>3</sub> eluent) of poly(TMC-*co*-32mol%-1β).

#### 7. MALDI-ToF Mass Spectrometry



**Fig. S29** MALDI-ToF MS of poly(1 $\alpha$ ) showing cyclic polymeric series [P<sub>c</sub>+ H]<sup>+</sup> (e.g. DP = 26 gives *m*/*z* 4528.91) and linear polymer series with benzyl alcohol end-group, [P<sub>L</sub>+ Na]<sup>+</sup> (e.g. DP = 24 gives m/z 4310.73).The less intense red series may be assigned to the sodium adduct of the linear polymer with the loss of 1 CO<sub>2</sub>.



**Fig. S30** MALDI-ToF MS of poly(TMC-*co*-47mol%- $1\alpha$ ) (Table 1, Entry 2), with benzyl alcohol and -OH end groups, flying as the sodium adduct.

#### 8. TGA-MS



**Fig. S31** TGA-MS of poly(TMC-*co*-66mol%-1 $\alpha$ ). Plotted *versus* furnace temperature, the sample mass (mg) and *m/z* 44 ion current (A) are both normalised to [0,1] to aid plotting on the same graph.



#### 9. Selected DSC Traces

**Fig. S32** First heating (-40 - 200 °C, 10 K min<sup>-1</sup>) and cooling curve (200 - -40°C, 10 K min<sup>-1</sup>) for poly(TMC-*co*-53mol%-α) (Table 3, Entry 5).



**Fig. S33** First heating (-40 - 200 °C, 10 K min<sup>-1</sup>) and cooling curve (200 - -40°C, 10 K min<sup>-1</sup>) for poly(TMC-*co*-14mol%- $\alpha$ ) (Table 3, Entry 9).



Fig. S34 First heating (-40 - 200 °C, 10 K min<sup>-1</sup>) and cooling curve (200 - -40 °C, 10 K min<sup>-1</sup>) for poly( $1\alpha$ ) (Table 3, Entry 1).

#### **10. Powder Diffraction**



Fig. S35 Powder diffraction of selected copolymer, poly(TMC-co-66mol%-1 $\alpha$ ) showing amorphous nature.

#### **11.DFT Calculations**

Geometries were fully optimised without any symmetry or geometry constraints, using the r $\omega$ B97XD LC hybrid functional developed by Chai and Head-Gordon, which includes an empirical dispersion correction and has been shown to effectively reproduce thermodynamic and kinetic experimental data.<sup>1-3</sup> To confirm its nature, the vibrational data was used to relax the geometry of each located transition state (one imaginary frequency) toward reactants and products. No IRC calculations were performed to further confirm the identity. Only the most stable conformational isomers are reported for all intermediates.

#### 11.1 Initiation Step in the ROP of $1\alpha$ , $1\beta$ and TMC

For modelling of the ROP initiation step, a mixture of basis sets was selected; a higher basis set was used for key atoms (the carbonate, guanidine and alcohol moieties of 1/TMC, TBD and BnOH) to account for potential anions and non-bonding (hydrogen bonding) interactions and a lower basis set for all other atoms to reduce the computational time. For steric reasons and after an initial Gibbs free energy screening, only attack of the benzyl alcohol at the face opposite to the  $\beta$ -OMe substituent was considered. Full coordinates for all the stationary points, together with computed Gibbs free energy and vibrational frequency data, are available *via* the corresponding Gaussian 09 output files, stored in the digital repository: DOI: <u>10.6084/m9.figshare.4644574</u>.



**Scheme S1** Typical scheme for the initiation step in the ROP of cyclic carbonates with TBD catalyst and BnOH initiator.



Fig. S36 DFT modelling of the initiation step in the ROP of  $1\alpha$ ,  $1\beta$  and TMC with TBD catalyst and BnOH initiator.

|                      | Structure                                                                        | G (Hartree)     | ΔG (kcal mol⁻¹) |
|----------------------|----------------------------------------------------------------------------------|-----------------|-----------------|
|                      | 1α                                                                               | -648.498978     | -               |
|                      | 1β                                                                               | -648.502445     |                 |
|                      | ТМС                                                                              | -381.569395     |                 |
|                      | TBD                                                                              | -438.513199     | -               |
|                      | BnOH                                                                             | -346.523501     | -               |
|                      | <b>1α + 1β+ TMC</b> + TBD+ BnOH                                                  | -2463.607518    | 0 (reference)   |
| Attack of 1a         | $I_a^{\alpha}$ (+TMC+ 1 $\beta$ )                                                | -2463.606158    | 0.9             |
| yielding a           | <b>ΤS<sub>I-IIa</sub></b> <sup>α</sup> (+ TMC+ 1β)                               | -2463.591526    | 10.0            |
| secondary            | <b>ΙΙ</b> <sub>a</sub> <sup>α</sup> (+ TMC+ 1β)                                  | -2463.605260    | 1.4             |
| alcohol chain        | III <sub>a</sub> $^{\alpha}$ (+T MC+ 1 $\beta$ )                                 | -2463.603273    | 2.7             |
|                      | <b>TS</b> <sub>III-IVa</sub> <sup>α</sup> (+ TMC+ 1β)                            | -2463.592375    | 9.5             |
|                      | $IV_a^{\alpha}$ (+ TMC+ 1 $\beta$ )                                              | -2463.609247    | -1.1            |
| Attack of <b>1</b> a | l <sub>b</sub> α                                                                 | -2463.607652    | -0.1            |
| primary              | TS <sub>I-IIb</sub> <sup>α</sup>                                                 | -2463.593471    | 8.8             |
| alcohol chain        | ll <sub>b</sub> α                                                                | -2463.603172    | 2.7             |
|                      | III <sub>b</sub> α                                                               | -2463.602453    | 3.2             |
|                      | TS <sub>III-IVb</sub> <sup>α</sup>                                               | -2463.588595    | 11.9            |
|                      | IV <sub>b</sub> <sup>α</sup>                                                     | -2463.610514    | -1.9            |
| Attack of <b>1</b> β | $I_a^\beta$ (+ TMC + 1 $\alpha$ )                                                | -2463.608178    | -0.4            |
| yielding a           | <b>TS</b> <sub>I-IIa</sub> <sup><math>\beta</math></sup> (+ TMC + 1 $\alpha$ )   | -2463.588695    | 11.8            |
| secondary            | $II_a^{\beta}$ (+ TMC + 1 $\alpha$ )                                             | -2463.600032    | 4.7             |
| alcohol chain        | $III_a^{\beta}$ (+ TMC + 1 $\alpha$ )                                            | -2463.599580    | 5.0             |
|                      | <b>TS</b> <sub>III-IVa</sub> <sup><math>\beta</math></sup> (+ TMC + 1 $\alpha$ ) | -2463.586121    | 13.4            |
|                      | $IV_a^{\beta}$ (+ TMC + 1 $\alpha$ )                                             | -2463.605322    | 1.4             |
| Attack of <b>1</b> β | $I_{b}^{\beta}$ (+ TMC + 1 $\alpha$ )                                            | -2463.605912    | 1.0             |
| yielding a           | <b>TS</b> <sub>I-IIb</sub> <sup><math>\beta</math></sup> (+ TMC + 1 $\alpha$ )   | -2463.588325    | 12.0            |
| primary              | $II_b^{\beta}$ (+ TMC + 1 $\alpha$ )                                             | -2463.599639    | 4.9             |
| alcohol chain        | $III_{b}^{\beta}$ (+ TMC + 1 $\alpha$ )                                          | -2463.598167    | 5.9             |
|                      | <b>TS</b> <sub>III-IVb</sub> <sup>β</sup> (+ TMC + 1α)                           | -2463.583984    | 14.8            |
|                      | $IV_a^\beta$ (+ TMC + 1 $\alpha$ )                                               | -2463.604258    | 2.0             |
| Attack of            | <b>Ι</b> <sup>T</sup> (+ 1α+ 1β)                                                 | -2463.604716    | 1.8             |
| symmetrical          | <b>TS</b> <sub>I-II</sub> <sup>T</sup> (+ 1α+ 1β)                                | -2463.587781    | 12.4            |
| TMC                  | <b>ΙΙ</b> <sup>T</sup> (+ 1α+ 1β)                                                | -2463.600632    | 4.3             |
|                      | <b>ΙΙΙ</b> <sup>T</sup> (+ 1α+ 1β)                                               | -2463.597317    | 6.4             |
|                      | $TS_{III-IV}^{T}$ (+ 1 $\alpha$ + 1 $\beta$ )                                    | -2463.584977    | 14.1            |
|                      | Ι <b>V</b> <sup>T</sup> (+ 1α+ 1β)                                               | -2463.608944    | -0.9            |
| Table S1 Cor         | nputed Gibbs Free Energies at                                                    | the rωB97XD/6-3 | 11+g(d,p)/6-    |

31+g(d)/cpcm=dichloromethane/298K level of theory for the ring-opening of  $1\alpha$ ,  $1\beta$  and TMC by benzyl alcohol with TBD.

#### 11.2 Monomer Ring Strain



#### 11.2.1 Thermodynamics of ring-opening with MeOH/PrOH

**Scheme S2** Ring-Opening Thermodynamics ( $\Delta\Delta G$ ) of **1** $\alpha$ , **1** $\beta$  and TMC with MeOH and <sup>i</sup>PrOH at the r $\omega$ B97XD/6-311+g(2d,p)/cpcm=dichloromethane/298K level of theory.

Full coordinates for all the stationary points, together with computed Gibbs free energy and vibrational frequency data, are available *via* the corresponding Gaussian 09 output files, stored in the digital repository: DOI: <u>10.6084/m9.figshare.4644586</u>.

|             | Structure                      | G                          | ΔΔG             |  |
|-------------|--------------------------------|----------------------------|-----------------|--|
|             | Siluciale                      | (Hartree)                  | (kcal mol⁻¹)    |  |
| Starting    | Methanol                       | -115.702205                | -               |  |
| Materials   | <sup>i</sup> PrOH              | -194.286844                | -               |  |
|             | 1α                             | -648.746770                | -               |  |
|             | 1β                             | -648.747521                | -               |  |
|             | ТМС                            | -381.648642                |                 |  |
| 1α Products | MeOH +1α                       | -764.448975                | 0.0 (reference) |  |
|             | Ring-opening to 1° alcohol     | -764.443008                | 3.7             |  |
|             | Ring-opening to 2° alcohol     | -764.44442                 | 2.8             |  |
|             | <sup>′</sup> PrOH + <b>1α</b>  | -843.033614                | 0.0 (reference) |  |
|             | Ring-opening to 1° alcohol     | -843.026393                | 4.5             |  |
|             | Ring-opening to 2° alcohol     | -843.028605                | 3.1             |  |
| 1β Products | MeOH + <b>1</b> β              | -764.449726                | 0.0 (reference) |  |
|             | Ring-opening to 1° alcohol     | -764.434326                | 9.7             |  |
|             | Ring-opening to 2° alcohol     | -764.441263                | 5.3             |  |
|             | ′PrOH + <b>1β</b>              | -843.034365                | 0.0 (reference) |  |
|             | Ring-opening to 1° alcohol     | -843.020818                | 8.5             |  |
|             | Ring-opening to 2° alcohol     | -843.024458                | 6.2             |  |
| ТМС         | MeOH +TMC                      | -497.350847                | 0.0 (reference) |  |
| Products    | Symmetrical ring-opening       | -497.347387                | 2.2             |  |
|             | <sup>′</sup> PrOH + <b>TMC</b> | -575.935486 0.0 (reference |                 |  |
|             | Symmetrical ring-opening       | -575.929747                | 3.6             |  |
| Table S2    | Computed Free Gibbs            | Energies at                | the rωB97XD/6-  |  |

311+g(2d,p)/cpcm=dichloromethane/298K level of theory.

#### 11.2.2 Isodesmic reaction with dimethylcarbonate



**Scheme S3** Consideration of the ring strain of  $1\alpha$ ,  $1\beta$  and **TMC** by calculation of the enthalpy of isodesmic ring-opening with dimethylcarbonate ( $\Delta\Delta H_{ring strain}$ ).

Full coordinates for all the stationary points, together with computed Gibbs free energy and vibrational frequency data, are available *via* the corresponding Gaussian 09 output files, stored in the digital repository: DOI: <u>10.6084/m9.figshare.4644577</u>.

| Structure                | H (Hartree) | $\Delta\Delta H$ (kcal mol <sup>-1</sup> ) |
|--------------------------|-------------|--------------------------------------------|
| Dimethyl carbonate (DMC) | -343.512814 | -                                          |
| 1α                       | -648.698158 | -                                          |
| 1β                       | -648.700746 | -                                          |
| ТМС                      | -381.611588 |                                            |
| DMC + <b>1</b> α         | -992.210972 | 0.0 (reference)                            |
| 1α oligocarbonate        | -992.221438 | -6.6                                       |
| DMC + <b>1β</b>          | -992.213560 | 0.0 (reference)                            |
| 1β oligocarbonate        | -992.220930 | -4.6                                       |
| DMC + <b>TMC</b>         | -725.124402 | 0.0 (reference)                            |
| TMC oligocarbonate       | -725.134702 | -6.5                                       |

**Table S3** Computed Gibbs Free Energies at the  $r\omega$ B97XD/6-311++g(2d,p)/cpcm=dichloromethane/298K level of theory for the isodesmic ring-opening with dimethyl carbonate (DMC) of  $1\alpha$ ,  $1\beta$  and TMC.

### 12. Single Crystal X-Ray Structures

#### 1α

| Empirical formula                 | C7 H10 O5                                   |                                    |  |
|-----------------------------------|---------------------------------------------|------------------------------------|--|
| Formula weight                    | 174.15                                      |                                    |  |
| Temperature                       | 150(2) K                                    |                                    |  |
| Wavelength                        | 1.54184 Å                                   |                                    |  |
| Crystal system                    | Orthorhombic                                |                                    |  |
| Space group                       | P212121                                     |                                    |  |
| Unit cell dimensions              | a = 5.85770(10) Å                           | <b>α=</b> 90°.                     |  |
|                                   | b = 11.00620(10) Å                          | β= 90°.                            |  |
|                                   | c = 11.88280(10) Å                          | γ = 90°.                           |  |
| Volume                            | 766.096(16) Å <sup>3</sup>                  |                                    |  |
| Z                                 | 4                                           |                                    |  |
| Density (calculated)              | 1.510 Mg/m <sup>3</sup>                     |                                    |  |
| Absorption coefficient            | 1.126 mm <sup>-1</sup>                      |                                    |  |
| F(000)                            | 368                                         |                                    |  |
| Crystal size                      | 0.250 x 0.180 x 0.100 mm <sup>3</sup>       |                                    |  |
| Theta range for data collection   | 5.479 to 72.513°.                           |                                    |  |
| Index ranges                      | -7≤h≤4, -13≤k≤13, -14                       | <b>l≤l≤</b> 14                     |  |
| Reflections collected             | 8745                                        |                                    |  |
| Independent reflections           | 1517 [R(int) = 0.0229]                      |                                    |  |
| Completeness to theta = 67.684°   | 100.0 %                                     | 100.0 %                            |  |
| Absorption correction             | Semi-empirical from equivalents             |                                    |  |
| Max. and min. transmission        | 1.00000 and 0.68919                         |                                    |  |
| Refinement method                 | Full-matrix least-squares on F <sup>2</sup> |                                    |  |
| Data / restraints / parameters    | 1517 / 0 / 110                              |                                    |  |
| Goodness-of-fit on F <sup>2</sup> | 1.108                                       |                                    |  |
| Final R indices [I>2sigma(I)]     | R1 = 0.0238, wR2 = 0                        | 0.0590                             |  |
| R indices (all data)              | R1 = 0.0239, wR2 = 0.0590                   |                                    |  |
| Absolute structure parameter      | -0.04(6)                                    |                                    |  |
| Extinction coefficient            | n/a                                         |                                    |  |
| Largest diff. peak and hole       | 0.128 and -0.173 e.Å <sup>-</sup>           | 0.128 and -0.173 e.Å <sup>-3</sup> |  |

## 1β

| Empirical formula                 | C7 H10 O5                                   |                |  |
|-----------------------------------|---------------------------------------------|----------------|--|
| Formula weight                    | 174.15                                      |                |  |
| Temperature                       | 150(2) K                                    |                |  |
| Wavelength                        | 1.54184 Å                                   |                |  |
| Crystal system                    | Orthorhombic                                |                |  |
| Space group                       | P212121                                     |                |  |
| Unit cell dimensions              | a = 7.56590(10) Å                           | <b>α=</b> 90°. |  |
|                                   | b = 9.9805(2) Å                             | β= 90°.        |  |
|                                   | c = 10.2418(2) Å                            | γ = 90°.       |  |
| Volume                            | 773.37(2) Å <sup>3</sup>                    |                |  |
| Z                                 | 4                                           |                |  |
| Density (calculated)              | 1.496 Mg/m <sup>3</sup>                     |                |  |
| Absorption coefficient            | 1.115 mm <sup>-1</sup>                      |                |  |
| F(000)                            | 368                                         |                |  |
| Crystal size                      | 0.250 x 0.200 x 0.150 mm <sup>3</sup>       |                |  |
| Theta range for data collection   | 6.192 to 72.264°.                           |                |  |
| Index ranges                      | -9≤h≤8, -11≤k≤12, -12≤l≤12                  |                |  |
| Reflections collected             | 4290                                        |                |  |
| Independent reflections           | 1497 [R(int) = 0.0225]                      |                |  |
| Completeness to theta = 67.684°   | 99.8 %                                      |                |  |
| Absorption correction             | Semi-empirical from equivalents             |                |  |
| Max. and min. transmission        | 1.00000 and 0.69375                         |                |  |
| Refinement method                 | Full-matrix least-squares on F <sup>2</sup> |                |  |
| Data / restraints / parameters    | 1497 / 0 / 111                              |                |  |
| Goodness-of-fit on F <sup>2</sup> | 1.061                                       |                |  |
| Final R indices [I>2sigma(I)]     | R1 = 0.0241, wR2 = 0.0616                   |                |  |
| R indices (all data)              | R1 = 0.0244, wR2 = 0.0621                   |                |  |
| Absolute structure parameter      | -0.09(7)                                    |                |  |
| Extinction coefficient            | 0.027(2)                                    |                |  |
| Largest diff. peak and hole       | 0.163 and -0.150 e.Å <sup>-3</sup>          |                |  |

#### 13. References

- 1. A. Buchard, F. Jutz, M. R. Kember, A. J. P. White, H. S. Rzepa and C. K. Williams, *Macromolecules*, 2012, 45, 6781-6795.
- 2. J.-D. Chai and M. Head-Gordon, *Phys. Chem. Chem. Phys.*, 2008, 10, 6615-6620.
- 3. J.-D. Chai and M. Head-Gordon, *J. Chem. Phys.*, 2008, 128, 084106.