Supporting Information

Well-defined hyperstar copolymers based on a thiol-yne hyperbranched core and a poly(2oxazoline) shell for biomedical applications

Matthias Hartlieb,^a Thomas Floyd,^a Alexander B. Cook,^a Carlos Sanchez-Cano,^a Sylvain Catrouillet,^{a,†} James Burns,^c Sébastien Perrier^{a, b,} *

^a Department of Chemistry, The University of Warwick, Coventry CV4 7AL, UK;

^b Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia

^c Syngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire, RG42 6EY, United Kingdom

[‡]- Current address: Institut Charles Gerhardt Montpellier UMR5253 CNRS-UM-ENSCM, Université de Montpellier, F-34095, Montpellier Cedex 5, France

* Correspondence to s.perrier@warwick.ac.uk

Figure S1: NMR spectra of oxidized thiol-yne monomer precursor (1) and PYMP (2). Peaks at 2.8 and 3.2 in the spectrum of 1 are associated to unreacted starting material which is removed upon purification after reduction.

Figure S2: NMR spectrum of hyperbranched polymer poly(PYMP) (3).

Figure S3: Multi-detector SEC chromatograms for hyperbranched polymer (3) by slow monomer addition to multifunctional alkene core.

Figure S4: Evolution of KC/R of 3 in DMF as a function of q^2 obtained by light scattering.

Figure S5: SEC traces of poly(PYMP) (**3**) stored in DMF at a concentration of 20 mg mL⁻¹ at -20°C in dependence of the time.

Figure S6: Kinetic studie of the polymerization of EtOx in Acetonitrile at 78°C. A) SEC traces of kinetic samples, B) Semi-logarithmic plot of the evolution of conversion over time, C) ¹H-NMR spectra of kinetic samples measured in CDCl₃, D) Molar mass (black) and Dispersity (blue) as a function of conversion.

Figure S7: NMR spectra (CDCl₃) of PEtOx after termination using ethyl xanthate and after aminolysis having a DP of 23 (4 (black), 6 (grey)) (A) or 42 (5 (black), 7(grey)) (B).

Figure S8: ¹H-NMR spectra of poly(PYMP) (3) as well as hyperstar copolymer (10, 11) in CDCl₃.

Figure S9: Evolution of KC/R of **10** in DMF as a function of q² and concentration obtained by light scattering.

Figure S10: Evolution of KC/R of **11** in DMF as a function of q² and concentration obtained by light scattering.

Figure S11: Evolution of KC/R of 10 in water as a function of q² obtained by light scattering.

Figure S12: Evolution of KC/R of 11 in water as a function of q² obtained by light scattering.

Figure S13: DLS data of hyperstars 10 and 11 in water. The graph shows the intensity distribution.

Figure S14: Calibration of the concentration dependent absorbance intensity of nile red in THF at a wavelength of 520 nm.

Figure S15: Confocal images of A2780 human ovarian carcinoma cells treated with nile red loaded hyperstars (10) for 2 h at 37°C at a concentration of 0.1 mg mL⁻¹. Nuclei were stained using Hoechst 33258.