Electronic Supplementary Information for:

A Dendrimer-Hydrophobic Interaction Synergy Improves the Stability of Polyion Complex Micelles

Marcos Fernandez-Villamarin,^a Ana Sousa-Herves,^a Silvia Porto,^a Noelia Guldris,^a José Martínez-Costas,^b Ricardo Riguera,^a and Eduardo Fernandez-Megia^{*,a}

^a Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain.

^b Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Bioquímica y Biología Molecular, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain.

Table of Contents

1. Synthesis and Characterization of New Compounds	S3
2. Synthesis of Fluorescently Labeled PEG ₅₀₀₀ -[G3]-PhCO ₂ ⁻ with Alexa Fluor 488	S19
3. Atomic Force Microscopy (AFM)	S25
4. Transmission Electron Microscopy (TEM)	S25
5. Stability of PIC Micelles - Dynamic Light Scattering (DLS)	S26
6. Tables S1 and S2. Summary of the Stability of PIC micelles by DLS	S32
7. Cell studies	S34

1. Synthesis and Characterization of New Compounds

Sodium 4-pentyn-1-sulfate. ClSO₃H (0.40 mL, 5.94 mmol) was added dropwise to a solution of pyridine (0.98 mL, 13.1 mmol) in CHCl₃ (5.4 mL) at 0 °C. After 30 min of stirring, 4-pentyn-1-ol (0.55 mL, 5.94 mmol) was added, and the reaction was left at 0 °C for 4 h. Then, reaction was allowed to reach rt, and after 12 h of stirring, it was extracted with H₂O (3 x 15 mL). The combined aqueous phase was evaporated to half volume, and then sat Na₂CO₃ added till no CO₂ evolution was observed. The resulting mixture was concentrated, and then triturated with hot EtOH (80 mL), and filtered. The filtrate was evaporated to give sodium 4-pentyn-1-sulfate as a white powder (1.04 g, 95%).

¹H NMR (300 MHz, D₂O) δ : 4.20 (dt, J = 2.8, 6.1 Hz, 2H), 2.52-2.25 (m, 3H), 2.07-1.81 (m, 2H). ¹³C NMR (75 MHz, D₂O) δ : 86.6, 71.9, 69.9, 29.5, 16.3.

¹H NMR spectrum of sodium 4-pentyn-1-sulfate

¹³C NMR spectrum of sodium 4-pentyn-1-sulfate

PEG₅₀₀₀-**PGA**₂₅-**N**₃. PEG₅₀₀₀-PGA₂₅ (10 mg, 1.14 µmol, DP 23) and 1-azido-3-aminopropane (4.3 mg, 42.8 µmol, 1.5 eq per carboxylate group) were dissolved in DMF (2.84 mL, final concentration of carboxylate groups 0.01 M) under Ar. HOBt (5.8 mg, 42.8 µmol, 1.5 eq per carboxylate) and EDC (8.2 mg, 42.8 µmol, 1.5 eq per carboxylate) were added. After 24 h of stirring at rt, the reaction mixture was poured into H₂O and purified by ultrafiltration (YM1) washing with H₂O (6 x 30 mL) to give PEG₅₀₀₀-PGA₂₅-N₃ as a white powder (9.6 mg, 82%).

¹H NMR (500 MHz, D₂O) δ : 4.48-4.19 (m, 23H), 3.93-3.51 (m, ~472H), 3.46-3.38 (m, 49H), 3.37-3.21 (m, 46H), 2.51-2.27 (m, 46H), 2.25-1.96 (m, 46H), 1.89-1.72 (m, 46H). IR (KBr, cm⁻¹): 3283, 2875, 2095, 1624, 1541, 1102.

¹H NMR spectrum of PEG₅₀₀₀-PGA₂₅-N₃

IR spectrum of PEG₅₀₀₀-PGA₂₅-N₃

PEG₅₀₀₀-**[G3]-A-CO**₂⁻. PEG₅₀₀₀-[G3]-NH₂·HCl (20.0 mg, 1.5 µmol) was dissolved in CH₂Cl₂ (0.41 mL, final concentration of amine groups 0.1 M) under Ar. Then, DIPEA (35 µL, 0.203 mmol, 5 eq per amine) and glutaric anhydride (23.2 mg, 0.203 mmol, 5 eq per amine) were added. After stirring overnight, the reaction mixture was concentrated, dissolved in MeOH and poured into diluted aq. NaHCO₃. The resulting mixture was purified by ultrafiltration (YM3) washing with H₂O (5 x 30 mL) to give PEG₅₀₀₀-[G3]-A-CO₂Na as a white foam after freezedrying (22.5 mg, 97%).

¹H NMR (500 MHz, D₂O) δ: 7.16 (s, 26H), 4.38-4.04 (m, 80H), 4.01-3.51 (m, ~796H), 3.49-3.32 (m, 57H), 3.26 (br s, 2H), 2.34-2.09 (m, 108H), 1.94-1.72 (m, 54H).

¹H NMR spectrum of PEG₅₀₀₀-[G3]-A-CO₂⁻

PEG₁₀₀₀₀-**[G3]-N**₃. PEG₁₀₀₀₀-**[**G2**]**-NH₂·HCl (123 mg, 9.82 µmol), GATG repeating unit (73.7 mg, 115 µmol, 1.3 eq per amine) and Et₃N (24.5 µL, 177 µmol, 1.5 eq per amine) were dissolved in dry CH₂Cl₂ (0.83 mL, final concentration of amine groups 0.1 M) under Ar. Then, HOBt (15.5 mg, 115 µmol, 1.3 eq per amine) and EDC·HCl (21.9 mg, 115 µmol, 1.3 eq per amine) were added. After 24 h of stirring at rt, the reaction mixture was evaporated under reduced pressure and purified by precipitation (MeOH/iPrOH) to afford PEG₁₀₀₀₀-**[**G3**]**-N₃ (158 mg, 90%) as a white powder.

¹H NMR (500 MHz, CDCl₃) δ: 7.19-6.97 (m, 26H), 4.27-4.05 (m, 80H), 3.97-3.45 (m, ~1240H), 3.44-3.26 (m, 59H). IR (KBr, cm⁻¹): 3267, 2887, 2107, 1115.

¹H NMR spectrum of PEG₁₀₀₀₀-[G3]-N₃

IR spectrum of PEG₁₀₀₀₀-[G3]-N₃

General Procedure for CuAAC Reactions. Azide containing block copolymers and alkynes (200 mol % per terminal azide groups) were dissolved in DMF/H₂O or *t*-BuOH/H₂O mixtures. Then, freshly prepared aqueous solutions of CuSO₄ (5 mol % per azide, 0.1 M) and sodium ascorbate (25 mol % per azide, 0.5 M) were added (final concentration of terminal azides 0.1 M). After 24 h of stirring at rt protected from light, reaction mixtures were purified by ultrafiltration (YM3) washing with aq 0.1 M EDTA pH6 (2 x 30 mL), sat NaHCO₃ (1 x 30 mL), and H₂O (5 x 30 mL) to afford the desired products after freeze-drying.

PEG₅₀₀₀-**PGA**₂₅-**PhCO**₂⁻. Starting from PEG₅₀₀₀-PGA₂₅-N₃ (9.4 mg, 0.91 µmol), 4-ethynyl benzoic acid (6.7 mg, 45.6 µmol), NaHCO₃ (7.7 mg, 91.2 µmol), CuSO₄ (22.8 µL, 1.14 µmol, 0.05 M) and sodium ascorbate (28.5 µL, 5.7 µmol, 0.2 M) dissolved in *t*-BuOH (0.11 mL)/H₂O (0.06 mL) and following the general procedure for CuAAC reactions, PEG₅₀₀₀-PGA₂₅-PhCO₂Na (10.2 mg, 77%; ultrafiltration with YM1) was obtained as a pale yellow foam.

¹H NMR (750 MHz, D₂O) δ: 8.18-7.16 (m, 115H), 4.46-3.95 (m, 69H), 3.88-3.24 (m, ~475H), 2.99 (br s, 46H), 2.48-1.63 (m, 138H). IR (KBr, cm⁻¹): 3402, 2924, 1657, 1545, 1420, 1101.

¹H NMR spectrum of PEG₅₀₀₀-PGA₂₅-PhCO₂⁻

IR spectrum of PEG₅₀₀₀-PGA₂₅-PhCO₂⁻

PEG₅₀₀₀-**[G3]-PhSO**₃⁻. Starting from PEG₅₀₀₀-[G3]-N₃ (15 mg, 1.15 µmol), ammonium 4ethynyl benzene sulfonate (12.4 mg, 62.2 µmol), CuSO₄ (15.6 µL, 1.56 µmol, 0.1 M) and sodium ascorbate (15.6 µL, 7.8 µmol, 0.5 M) dissolved in DMF (0.16 mL)/H₂O (0.12 mL) and following the general procedure for CuAAC reactions, PEG₅₀₀₀-[G3]-PhSO₃Na (18.7 mg, 87%) was obtained as a pale yellow foam.

¹H NMR (500 MHz, D₂O) δ: 8.15-7.94 (m, 27H), 7.62 (br s, 54H), 7.49 (br s, 54H), 6.96-6.63 (m, 26H), 4.38 (br s, 54H), 4.12 (br s, 2H), 3.94-3.21 (m, ~877H), 3.12 (br s, 2H). IR (ATR, cm⁻¹): 3454, 2873, 1194, 1095.

¹H NMR spectrum of PEG₅₀₀₀-[G3]-PhSO₃⁻

IR spectrum of PEG₅₀₀₀-[G3]-PhSO₃⁻

PEG₅₀₀₀-**[G3]-OSO**₃⁻. Starting from PEG₅₀₀₀-[G3]-N₃ (30 mg, 2.31 µmol), sodium 4-pentyn-1sulfate (23.1 mg, 125 µmol), CuSO₄ (31.2 µL, 3.12 µmol, 0.1 M) and sodium ascorbate (31.2 µL, 15.6 µmol, 0.5 M) dissolved in DMF (0.31 mL)/H₂O (0.25 mL) and following the general procedure for CuAAC reactions, PEG₅₀₀₀-[G3]-OSO₃Na (39.8 mg, 96%) was obtained as a pale yellow foam.

¹H NMR (500 MHz, D_2O) δ : 7.98-7.66 (m, 27H), 7.36-6.98 (m, 26H), 4.54 (br s, 54H), 4.26-3.98 (m, 134H), 3.95-3.50 (m, ~794H), 3.43 (s, 3H), 3.24 (br s, 2H), 2.82-2.64 (m, 54H), 2.08-1.85 (m, 54H). IR (KBr, cm⁻¹): 3458, 2878, 1249, 1113.

¹H NMR spectrum of PEG₅₀₀₀-[G3]-OSO₃⁻

IR spectrum of PEG₅₀₀₀-[G3]-OSO₃⁻

¹H NMR spectrum of PEG₅₀₀₀-[G3]-PhCO₂⁻

¹³C NMR spectrum of PEG₅₀₀₀-[G3]-PhCO₂⁻

IR spectrum of PEG₅₀₀₀-[G3]-PhCO₂⁻

MALDI-TOF MS of PEG₅₀₀₀-[G3]-PhCO₂⁻

PEG₂₀₀₀-[G3]-PhCO₂⁻. Starting from PEG₂₀₀₀-[G3]-N₃ (21.0 mg, 21.0 µmol), 4-ethynyl benzoic acid (19.1 mg, 113 µmol), NaHCO₃ (19.1 mg, 227 µmol), CuSO₄ (28.4 µL, 2.84 µmol, 0.1 M) and sodium ascorbate (28.4 µL, 14.2 µmol, 0.5 M) dissolved in DMF (0.28 mL)/H₂O (0.23 mL) and following the general procedure for CuAAC reactions, PEG₂₀₀₀-[G3]-PhCO₂Na (25.3 mg, 83%) was obtained as a pale yellow foam.

¹H NMR (500 MHz, D₂O) δ : 8.20-7.94 (m, 27H), 7.90-7.67 (m, 54H), 7.49 (br s, 54H), 7.03-6.62 (m, 26H), 4.44 (br s, 54H), 4.17-3.28 (m, ~607H), 3.20 (br s, 2H). IR (ATR, cm⁻¹): 3366, 2871, 1590, 1546, 1382, 1096.

¹H NMR spectrum of PEG₂₀₀₀-[G3]-PhCO₂⁻

IR spectrum of PEG₂₀₀₀-[G3]-PhCO₂⁻

PEG₁₀₀₀₀-[G3]-PhCO₂. Starting from PEG₁₀₀₀₀-[G3]-N₃ (20.0 mg, 1.11 µmol), 4-ethynyl benzoic acid (8.8 mg, 60.2 µmol), NaHCO₃ (10.1 mg, 120 µmol), CuSO₄ (15.1 µL, 1.51 µmol, 0.1 M) and sodium ascorbate (15.1 µL, 7.55 µmol, 0.5 M) dissolved in DMF (0.15 mL)/H₂O (0.12 mL) and following the general procedure for CuAAC reactions, PEG₁₀₀₀₀-[G3]-PhCO₂Na (24.9 mg, 99%) was obtained as a pale yellow foam.

¹H NMR (500 MHz, D₂O) δ: 8.22-7.97 (m, 27H), 7.96-7.70 (m, 54H), 7.68-7.36 (m, 54H), 7.03-6.69 (m, 26H), 4.45 (br s, 54H), 4.22 (br s, 2H), 4.15-3.28 (m, ~1321H), 3.20 (br s, 2H). IR (KBr, cm⁻¹): 3424, 2872, 1589, 1454, 1113.

¹H NMR spectrum of PEG₁₀₀₀₀-[G3]-PhCO₂⁻

IR spectrum of PEG₁₀₀₀₀-[G3]-PhCO₂⁻

PEG₅₀₀₀-**[G2]-PhCO**₂⁻. Starting from PEG₅₀₀₀-[G2]-N₃ (16.4 mg, 2.1 µmol), 4-ethynyl benzoic acid (6.5 mg, 38.6 µmol), NaHCO₃ (6.5 mg, 77.6 µmol), CuSO₄ (19.3 µL, 0.97 µmol, 0.05 M) and sodium ascorbate (24.2 µL, 4.8 µmol, 0.2 M) dissolved in DMF (0.10 mL)/H₂O (0.05 mL) and following the general procedure for CuAAC reactions, PEG₅₀₀₀-[G2]-PhCO₂ (16.8 mg, 85%; ultrafiltration with YM1) obtained as a pale yellow foam.

¹H NMR (500 MHz, D₂O) δ: 8.23-8.02 (m, 9H), 7.95-7.68 (m, 18H), 7.66-7.47 (m, 18H), 6.95-6.68 (m, 8H), 4.48 (br s, 18H), 4.23 (br s, 2H), 4.16-3.31 (m, ~589H), 3.22 (br s, 2H). IR (ATR, cm⁻¹): 3373, 2879, 1589, 1544, 1342, 1143.

¹H NMR spectrum of PEG₅₀₀₀-[G2]-PhCO₂⁻

IR spectrum of PEG₅₀₀₀-[G2]-PhCO₂⁻

PEG₅₀₀₀-**[G4]-PhCO**₂⁻. Starting from PEG₅₀₀₀-[G4]-N₃ (20.0 mg, 0.69 µmol), 4-ethynyl benzoic acid (16.2 mg, 111 µmol), NaHCO₃ (18.7 mg, 222 µmol), CuSO₄ (27.8 µL, 2.78 µmol, 0.1 M) and sodium ascorbate (27.8 µL, 13.9 µmol, 0.5 M) dissolved in DMF (0.28 mL)/H₂O (0.22 mL) and following the general procedure for CuAAC reactions, PEG₅₀₀₀-[G4]-PhCO₂Na (22.2 mg, 79%) was obtained as yellow foam.

¹H NMR (500 MHz, D₂O) δ : 8.00 (br s, 81H), 7.84-7.67 (m, 162H), 7.45 (br s, 162H), 6.99-6.67 (m, 80H), 4.41 (br s, 162H), 4.12-3.27 (m, ~1745H). IR (KBr, cm⁻¹): 3416, 2874, 1589, 1541, 1421, 1115.

¹H NMR spectrum of PEG₅₀₀₀-[G4]-PhCO₂⁻

IR spectrum of PEG₅₀₀₀-[G4]-PhCO₂⁻

PEG₅₀₀₀-[G3]-BnNH₃⁺

¹H NMR spectrum of PEG₅₀₀₀-[G3]-BnNH₃⁺

¹³C NMR spectrum of PEG₅₀₀₀-[G3]-BnNH₃⁺

IR spectrum of PEG₅₀₀₀-[G3]-BnNH₃⁺

MALDI-TOF MS of PEG₅₀₀₀-[G3]-BnNH₃⁺

BocHN-PEG₅₀₀₀-**[G1]-N**₃. BocHN-PEG₅₀₀₀-NH₂ (200 mg, 39.9 µmol) and GATG repeating unit (51.2 mg, 79.8 µmol, 2 eq per amine) were dissolved in dry CH₂Cl₂ (4.0 mL, final concentration of amine groups 0.1 M) under Ar. Then, HOBt·(16.2 mg, 119 µmol, 3 eq per amine) and EDC·HCl (22.9 mg, 119 µmol, 3 eq per amine) were added. After stirring for 24 h at rt, the reaction mixture was evaporated under reduced pressure and purified by precipitation (MeOH/iPrOH) to afford BocHN-PEG₅₀₀₀-[G1]-N₃ (216 mg, 96%) as a white solid.

¹H NMR (500 MHz, D₂O) δ : 7.22 (s, 2H), 4.40-4.22 (m, 6H), 4.05-3.54 (m, ~462H), 3.51-3.42 (m, 6H), 3.29 (t, *J* = 5.2 Hz, 2H), 1.46 (s, 9H). IR (KBr, cm⁻¹): 3360, 2887, 2108, 1115.

¹H NMR spectrum of BocHN-PEG₅₀₀₀-[G1]-N₃

IR spectrum of BocHN-PEG₅₀₀₀-[G1]-N₃

BocHN-PEG₅₀₀₀-**[G2]-N**₃. BocHN-PEG₅₀₀₀-**[G1]**-N₃ (117 mg, 20.7 µmol) was dissolved in a mixture of MeOH (1.4 mL) and H₂O (70 µL, 5% v/v). Then, PPh₃ (18.8 mg, 71.4 µmol, 1.15 eq per azide) was added. After stirring for 12 h at rt, the reaction mixture was evaporated under reduced pressure and purified by precipitation (CH₂Cl₂/Et₂O) to give BocHN-PEG₅₀₀₀-**[G1]**-NH₂ (108 mg, 94%). This polymer and GATG repeating unit (74.8 mg, 116 µmol, 2 eq per amine) were dissolved in dry CH₂Cl₂ (0.63 mL, final concentration of amine groups 0.1 M) under Ar. Then, HOBt (15.7 mg, 116 µmol, 2 eq per amine) and EDC·HCl (22.3 mg, 116 µmol, 2 eq per amine) were added. After stirring for 24 h at rt, the reaction mixture was evaporated under reduced pressure and purified by precipitation (MeOH/iPrOH) to afford BocHN-PEG₅₀₀₀-**[G2]**-N₃ (127 mg, 89%) as a white solid.

¹H NMR (500 MHz, D₂O) δ : 7.24-7.08 (m, 8H), 4.33-4.06 (m, 24H), 4.03-3.56 (m, ~540H), 3.53-3.41 (m, 18H), 3.32 (t, *J* = 5.2 Hz, 2H), 1.49 (s, 9H). IR (KBr, cm⁻¹): 3400, 2885, 2106, 1115.

IR spectrum of BocHN-PEG₅₀₀₀-[G2]-N₃

BocHN-PEG₅₀₀₀-**[G3]-N**₃. BocHN-PEG₅₀₀₀-**[**G2**]**-N₃ (58.7 mg, 7.91 µmol) was dissolved in a mixture of MeOH (0.49 mL) and H₂O (25 µL, 5% v/v). Then, PPh₃ (21.5 mg, 81.8 µmol, 1.15 eq per azide) was added. After stirring for 12 h at rt, the reaction mixture was evaporated under reduced pressure and purified by precipitation (CH₂Cl₂/Et₂O) to give BocHN-PEG₅₀₀₀-**[**G2**]**-NH₂ (55.8 mg, 98%). This polymer and GATG repeating unit (88.3 mg, 138 µmol, 2 eq per amine) were dissolved in dry CH₂Cl₂ (0.72 mL, final concentration of amine groups 0.1 M) under Ar. Then, HOBt (18.7 mg, 138 µmol, 2 eq per amine) and EDC·HCl (26.4 mg, 138 µmol, 2 eq per amine) were added. After stirring for 24 h at rt, the reaction mixture was evaporated under reduced pressure and purified by ultrafiltration (YM1), washing with MeOH:H₂O (1:1, 3 x 30 mL) and H₂O (3 x 30 mL), to afford BocHN-PEG₅₀₀₀-[G3]-N₃ (94.5 mg, 95%) as a pale yellow foam after freeze-drying.

¹H NMR (500 MHz, CDCl₃) δ: 7.19-7.04 (m, 26H), 4.37-4.05 (m, 78H), 4.00-3.44 (m, ~774H), 3.43-3.25 (m, 56H), 1.43 (s, 9H). IR (KBr, cm⁻¹): 3402, 2870, 2108, 1456, 1119.

¹H NMR spectrum of BocHN-PEG₅₀₀₀-[G3]-N₃

IR spectrum of BocHN-PEG₅₀₀₀-[G3]-N₃

BocHN-PEG₅₀₀₀-[G3]-PhCO₂⁻. Starting from BocHN-PEG₅₀₀₀-[G3]-N₃ (17.0 mg, 1.33 µmol), 4-ethynyl benzoic acid (10.5 mg, 71.7 µmol), NaHCO₃ (12.0 mg, 143 µmol), CuSO₄ (17.9 µL, 1.79 µmol, 0.1 M) and sodium ascorbate (17.9 µL, 8.95 µmol, 0.5 M) dissolved in DMF (0.18 mL)/H₂O (0.14 mL) and following the general procedure for CuAAC reactions, BocHN-PEG₅₀₀₀-[G3]-PhCO₂Na (20.5 mg, 92%) was obtained as a pale yellow foam.

¹H NMR (500 MHz, D₂O) δ: 8.21-7.96 (m, 27H), 7.87-7.69 (m, 54H), 7.62-7.44 (m, 54H), 7.00-6.67 (m, 26H), 4.44 (br s, 54H), 4.11-3.36 (m, ~852H), 3.30 (br s, 2H), 1.47 (s, 9H). IR (KBr, cm⁻¹): 3421, 2873, 1589, 1541, 1423, 1113.

¹H NMR spectrum of BocHN-PEG₅₀₀₀-[G3]-PhCO₂⁻

IR spectrum of BocHN-PEG₅₀₀₀-[G3]-PhCO₂⁻

H₂N-PEG₅₀₀₀-[G3]-PhCO₂⁻. BocHN-PEG₅₀₀₀-[G3]-PhCO₂⁻ (17 mg, 1.01 μ mol) was dissolved in CH₂Cl₂ (0.50 mL) and TFA (0.17 mL). After 15 min of stirring at rt, the reaction mixture was evaporated, dissolved in sat NaHCO₃ and purified by ultrafiltration (YM3) washing with H₂O. After freeze-drying, H₂N-PEG₅₀₀₀-[G3]-PhCO₂Na was obtained (17 mg, 100%) as a pale yellow foam.

¹H NMR (500 MHz, D₂O) δ: 8.27-7.97 (m, 27H), 7.94-7.69 (m, 54H), 7.65-7.41 (m, 54H), 7.06-6.63 (m, 26H), 4.44 (br s, 54H), 4.12-3.28 (m, ~852H), 2.96 (br s, 2H).

¹H NMR spectrum of H₂N-PEG₅₀₀₀-[G3]-PhCO₂⁻

AF488-PEG₅₀₀₀-[G3]-PhCO₂⁻. H₂N-PEG₅₀₀₀-[G3]-PhCO₂Na (1.0 mg, 57 nmol) was dissolved in DMF (0.20 mL). Then, Alexa Fluor 488 carboxylic acid, succinimidyl ester (0.4 mg) dissolved in dry DMSO (0.10 mL) was added and the resulting solution was stirred at rt overnight in the dark. The reaction mixture was purified by ultrafiltration (YM3) washing with sat NaHCO₃ and H₂O. After freeze-drying, AF488-PEG₅₀₀₀-[G3]-PhCO₂Na (0.8 mg, 79%) was obtained. A degree of functionalization of 79% in Alexa Fluor 488 was determined by absorbance at 494 nm (λ_{494} : 73000 cm⁻¹M⁻¹ as provided by supplier).

3. Atomic Force Microscopy (AFM)

Samples for AFM imaging were prepared by depositing aqueous solutions of PIC micelles (0.025-0.05 mg/mL) onto Si wafers. AFM measurements were performed at an atomic force microscope MFP-3D (Asylum Research). Average diameters of 30±8 nm for PEG₅₀₀₀-[G3]-PhCO₂⁻/PLL₁₀₈ micelles and 27±5 nm for PEG₅₀₀₀-[G3]-BnNH₃⁺/PGA₁₃₆ were determined using NanoScope Analysis software (Veeco).

Figure S1. AFM image of PIC micelles prepared from PEG₅₀₀₀-[G3]-BnNH₃⁺ and PGA₁₃₆.

4. Transmission Electron Microscopy (TEM)

TEM measurements were performed on a Philips CM-12 or JEOL JEM1010 operated at 80 kV, electron microscopes. All samples were ultrafiltered against Milli-Q water (Amicon, MWCO 3000) to remove salts. A drop of a solution of PIC micelles was settled on Formvar precoated or carbon films on copper grids, and allowed to dry at rt for 24 h. Negative staining was performed by using a droplet of 1% phosfotungstic acid or 2% uranyl acetate following standard procedures. An average diameter of *ca*. 24 ± 4 nm was determined by measuring the size of about 35 micelles using ImageJ software.

Figure S2. TEM image of PIC micelles prepared from PEG₅₀₀₀-[G3]-PhCO₂⁻ and PLL₁₀₈.

5. Stability of PIC Micelles - Dynamic Light Scattering (DLS)

Figure S3. PIC micelles prepared from PEG₅₀₀₀-[G3]-A-CO₂⁻ and PLL₁₀₈ in 10 mM PB, pH 7.4, 25 °C. DLS histograms upon formation (A) and 1 h after the addition of 150 mM NaCl (B).

Figure S4. PIC micelles prepared from PEG_{5000} -[G3]-CO₂⁻ and PLL_{108} in 10 mM PB, pH 7.4, 25 °C. DLS histograms upon formation (A) and 1 h after the addition of 150 mM NaCl (B).

Figure S5. PIC micelles prepared from PEG_{5000} -[G3]-OSO₃⁻ and PLL_{108} in 10 mM PB, pH 7.4, 25 °C. DLS histograms upon formation (A), and 1 h after the addition of 150 mM NaCl (B) or 300 mM NaCl (C). DLS histogram of the micelles in 150 mM NaCl after 12 h at 37 °C (D).

Figure S6. PIC micelles prepared from PEG_{5000} -[G3]-PhCO₂⁻ and PLL_{64} in 10 mM PB, pH 7.4, 25 °C. DLS histograms upon formation (A), and 1 h after the addition of 150 mM NaCl (B), 450 mM NaCl (C) or 600 mM NaCl (D). DLS histogram of the micelles in 150 mM NaCl after 12 h at 37 °C (E).

Figure S7. PIC micelles prepared from PEG_{5000} -[G3]-PhCO₂⁻ and PLL_{108} in 10 mM PB, pH 7.4, 25 °C. DLS histograms upon formation (A), and 1 h after the addition of 150 mM NaCl (B), 600 mM NaCl (C) or 750 mM NaCl (D). DLS histogram of the micelles in 150 mM NaCl after 12 h at 37 °C (E).

Figure S8. PIC micelles prepared from PEG_{5000} -[G3]-PhCO₂⁻ and PLL_{157} in 10 mM PB, pH 7.4, 25 °C. DLS histograms upon formation (A), and 1 h after the addition of 150 mM NaCl (B), 600 mM NaCl (C) or 750 mM NaCl (D). DLS histogram of the micelles in 150 mM NaCl after 12 h at 37 °C (E).

Figure S9. PIC micelles prepared from PEG_{10000} -[G3]-PhCO₂⁻ and PLL_{108} in 10 mM PB, pH 7.4, 25 °C. DLS histograms upon formation (A), and 1 h after the addition of 150 mM NaCl (B), 600 mM NaCl (C) or 750 mM NaCl (D). DLS histogram of the micelles in 150 mM NaCl after 12 h at 37 °C (E).

Figure S10. PIC micelles prepared from PEG_{5000} -[G2]-PhCO₂⁻ and PLL_{108} in 10 mM PB, pH 7.4, 25 °C. DLS histograms upon formation (A) and 1 h after the addition of 150 mM NaCl (B).

Figure S11. PIC micelles prepared from PEG_{5000} -[G4]-PhCO₂⁻ and PLL_{108} in 10 mM PB, pH 7.4, 25 °C. DLS histograms upon formation (A) and 1 h after the addition of 150 mM NaCl (B). DLS histogram in 150 mM NaCl after 12 h at 37 °C (C).

Figure S12. PIC micelles prepared from PEG₅₀₀₀-[G3]-PhSO₃⁻ and PLL₁₀₈ in 10 mM PB, pH 7.4, 25 °C. DLS histograms upon formation (A), and 1 h after the addition of 150 mM NaCl (B) or 1.05 M NaCl (C). DLS histogram of the micelles in 150 mM NaCl after 12 h at 37 °C (D).

Figure S13. DLS histogram of the mixture PEG5000-PGA25 and PLL108 in 10 mM PB, pH 7.4, 25 °C.

Figure S14. PIC micelles prepared from PEG₅₀₀₀-PGA₅₀ and PLL₁₀₈ in 10 mM PB, pH 7.4, 25 °C. DLS histograms upon formation (A) and 1 h after the addition of 150 mM NaCl (B).

Figure S15. DLS histogram of the mixture PEG₅₀₀₀-PGA₁₀₀ and PLL₁₀₈ in 10 mM PB, pH 7.4, 25 °C.

Figure S16. PIC micelles prepared from PEG_{5000} -PGA₂₅-PhCO₂⁻ and PLL₁₀₈ in 10 mM PB, pH 7.4, 25 °C. DLS histograms upon formation (A) and 1 h after the addition of 150 mM NaCl (B).

Figure S17. PIC micelles prepared from PEG_{5000} -[G3]-PhCO₂⁻ and PEG_{5000} -[G3]-BnNH₃⁺ in 10 mM PB, pH 7.4, 25 °C. DLS histograms upon formation (A), and 1 h after the addition of 150 mM NaCl (B) or 3 M NaCl (C). DLS histogram of the micelles in 150 mM NaCl after 12 h at 37 °C (D).

Figure S18. PIC micelles prepared from PEG_{5000} -[G3]-NH₃⁺ and PGA₁₃₆ in 10 mM PB, pH 7.4, 25 °C. DLS histograms upon formation (A) and 1 h after the addition of 150 mM NaCl (B).

Figure S19. PIC micelles prepared from PEG_{5000} -[G3]-BnNH₃⁺ and PGA_{136} in 10 mM PB, pH 7.4, 25 °C. DLS histograms upon formation (A) and 1 h after the addition of 150 mM NaCl (B). DLS histogram of the micelles in 150 mM NaCl after 12 h at 37 °C (C).

Figure S20. DLS histograms of: PEG₅₀₀₀-[G3]-OSO₃⁻/PLL₁₀₈ micelles after 4.5 days of dialysis at 37 °C against 50 mM acetate buffer, pH 5.0 (A), and PEG₅₀₀₀-[G3]-CO₂⁻/PLL₁₀₈ micelles after 1 h at 25 °C in 50 mM acetate buffer, pH 5.0 (B).

6. Tables S1 and S2. Summary of the Stability of PIC micelles by DLS

PIC	PLL (DP)	Upon formation PB 7.4 25 °C	PB 7.4 25 ℃ 150 mM NaCl	PB 7.4 25 °C 300 mM NaCl	PB 7.4 25 ℃ 450 mM NaCl	PB 7.4 25 °C 600 mM NaCl	PB 7.4 25 ℃ 750 mM NaCl	PB 7.4 25 °C 900 mM NaCl	PB 7.4 25 °C > 1 M NaCl
PEG ₅₀₀₀ -[G3]-A-CO ₂	108	+	-						
PEG ₅₀₀₀ -[G3]-CO ₂	108	+	-						
PEG ₅₀₀₀ -[G3]-OSO ₃	108	+	+	-					
PEG ₅₀₀₀ -[G3]-PhCO ₂	64	+	+	+	+	-			
PEG ₅₀₀₀ -[G3]-PhCO ₂	108	+	+	+	+	+	-		
PEG ₅₀₀₀ -[G3]-PhCO ₂	157	+	+	+	+	+	-		
PEG ₂₀₀₀ -[G3]-PhCO ₂	108	-							
PEG ₁₀₀₀₀ -[G3]-PhCO ₂	108	+	+	+	+	+	-		
PEG ₅₀₀₀ -[G2]-PhCO ₂	108	+	-						
PEG ₅₀₀₀ -[G4]-PhCO ₂	108	+	+	-					
PEG ₅₀₀₀ -[G3]-PhSO ₃	108	+	+	+	+	+	+	+	+ (1.05 M)
PEG ₅₀₀₀ -PGA ₂₅	108	-							
PEG ₅₀₀₀ -PGA ₅₀	108	+/	-						
PEG ₅₀₀₀ -PGA ₁₀₀	108	-							
PEG ₅₀₀₀ -PGA ₂₅ -PhCO ₂	108	+	-						
PEG ₅₀₀₀ -[G3]-PhCO ₂	PEG ₅₀₀₀ -[G3]-BnNH ₃ ⁺	+	+	+	+	+	+	+	+ (3 M)

 Table S1. Stability of PIC micelles upon formation and towards increasing concentrations of NaCl and heating at 37 °C (+: stable, -: not stable)

PIC	PLL/PGA (DP)	Upon formation PB 7.4 25 °C	PB 7.4 25 °C 150 mM NaCl	PB 7.4 37 ℃ 150 mM NaCl, 12 h
PEG ₅₀₀₀ -[G3]-A-CO ₂	PLL(108)	19.4 (0.179)	-	-
PEG ₅₀₀₀ -[G3]-CO ₂	PLL(108)	20.4 (0.115)	-	-
PEG ₅₀₀₀ -[G3]-OSO ₃ ⁻	PLL(108)	16.5 (0.292)	17.8 (0.261)	14.8 (0.334)
PEG ₅₀₀₀ -[G3]-PhCO ₂	PLL(64)	26.8 (0.046)	23.8 (0.051)	20.8 (0.128)
PEG ₅₀₀₀ -[G3]-PhCO ₂	PLL(108)	31.8 (0.070)	34.4 (0.082)	31.9 (0.151)
PEG ₅₀₀₀ -[G3]-PhCO ₂	PLL(157)	31.9 (0.137)	34.8 (0.158)	32.9 (0.203)
PEG ₂₀₀₀ -[G3]-PhCO ₂	PLL(108)	-		-
PEG ₁₀₀₀₀ -[G3]-PhCO ₂	PLL(108)	26.7 (0.140)	24.8 (0.172)	25.1 (0.166)
PEG ₅₀₀₀ -[G2]-PhCO ₂	PLL(108)	15.1 (0.373)	-	-
PEG ₅₀₀₀ -[G4]-PhCO ₂	PLL(108)	103 (0.036)	141 (0.030)	-
PEG ₅₀₀₀ -[G3]-PhSO ₃	PLL(108)	30.4 (0.078)	27.8 (0.165)	26.0 (0.174)
PEG ₅₀₀₀ -PGA ₂₅	PLL(108)	-		-
PEG ₅₀₀₀ -PGA ₅₀	PLL(108)	54.1 (0.196)	-	-
PEG ₅₀₀₀ -PGA ₁₀₀	PLL(108)	-		-
PEG ₅₀₀₀ -PGA ₂₅ -PhCO ₂	PLL(108)	35.1 (0.321)	-	-
PEG ₅₀₀₀ -[G3]-PhCO ₂	PEG ₅₀₀₀ -[G3]-BnNH ₃ ⁺	23.2 (0.164)	23.8 (0.143)	24.2 (0.224)
PEG ₅₀₀₀ -[G3]-NH ₃ ⁺	PGA(136)	19.0 (0.202)	-	-
PEG ₅₀₀₀ -[G3]-BnNH ₃ ⁺	PGA(136)	30.6 (0.150)	29.1 (0.129)	29.4 (0.176)

Table S2. Hydrodynamic diameters and PDI (in brackets) of PIC micelles upon formation and after the addition of NaCl and heating at 37 °C

7. Cell Studies

Figure S21. Cell viability (MTT) of A549 cells at 24 h in the presence of PIC micelles prepared from PEG_{5000} -[G3]-BnNH₃⁺ and PGA_{136} (PEG_{5000} -[G3]-BnNH₃⁺ and PGA_{136} at the same concentrations as in micelle were used as controls).

Non pH-Sensitive DOX-loaded Control Micelles. PIC micelles from PEG_{5000} -[G3]-PhCO₂⁻ and PLL_{108} were prepared as described. Then, a freshly prepared solution of EDC (0.1 g/mL in H₂O, 10 eq per carboxylate group in the micelle) was added. The resulting solution was allowed to stir overnight at rt. Cross-linked micelles were dialyzed against 10 mM PB pH 7.4, 24 h (Spectrum Labs, Spectra/Por[®] 6 membrane, MWCO 1 KDa) before being loaded with DOX following identical procedure as for non-crosslinked micelles.

Figure S22. Fluorescence microscopy images of A549 cells treated with control non pHsensitive DOX-loaded micelles. Cells were incubated for 1 h and then were washed with PBS and imaged immediately (upper row) or after 2 h (lower row). Images from left to right show DOX fluorescence in cells (red), lysosomes stained by Lysotracker Green (green), cell nuclei stained by Hoechst (blue), and merged images.