Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is © The Royal Society of Chemistry 2017

Supporting Information

One-shot controlled/living copolymerization for various comonomer sequence distributions via dual radical and cationic active species from RAFT terminals

Kotaro Satoh,^{†,‡,*} Hideyuki Hashimoto,[†] Shinya Kumagai,[†] Hiroshi Aoshima,[†] Mineto Uchiyama,[†] Ryoma Ishibashi,[†] Yuuma Fujiki,[†]and Masami Kamigaito[†]

[†]Department of Applied Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan [‡]Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan

*To whom correspondence should be addressed. E-mail: satoh@apchem.nagoya-u.ac.jp

Contents:

Table S1	······ S2
Fig. S1	······ \$3
Fig. S2	······ S4
Fig. S3	······ S5
Fig. S4	······ S6
Fig. S5	······ S7
Fig. S6	······ S8
Fig. S7	

	(2)			=====(====)2			
M ₂	[IBVE] ₀ /[M ₂] ₀	EtAl(ODBP) ₂ (mM)	Time (h)	Conv. $(\%)^b$ (IBVE/M ₂)	$M_{\rm n}^{\ c}$	$M_{ m w}/M_{ m n}^{\ c}$	$IBVE/M_2$ in copolymer ^b
MA	1500/1500	0	156	34/95	10,900	1.29	25/75
		200	6	73/99	10,200	1.75	43/57
		400	5	81/99	8,300	1.80	45/55
		600	3	83/99	7,600	2.00	46/54
MA	4500/1500	0	144	16/92	12,700	1.31	36/64
		200	5	31/99	14,300	1.42	47/53
MA	5000/1000	0	202	12/94	8,800	1.31	40/60
		200	3	19/96	10,100	1.59	48/52
MA	5400/600	0	144	6/94	5,500	1.37	43/57
		200	1.5	11/95	6,400	1.56	50/50
nBA	1500/1500	0	96	38/92	12,200	1.24	22/78
		200	24	63/98	9,300	1.69	43/57
<i>t</i> BA	1500/1500	0	98	34/94	12,500	1.36	19/81
		200	53	37/85	3,000	1.83	28/72

Table S1. RAFT Radical Copolymerization of Isobutyl Vinyl Ether (IBVE: M_1) and Various Acrylates (M_2) with CPETC in the Presence of EtAl(ODBP)₂^{*a*}

^{*a*}Polymerization conditions: [CPETC]₀/[V-70]₀/[EtAl(ODBP)₂]₀ = 20/5/0 or 200 mM in toluene at 20 °C. ^{*b*}The monomer conversion and monomer composition ratio were determined by ¹H NMR. ^{*c*}The number-average molecular weight (M_n) and dispersity (M_w/M_n) were determined by size-exclusion chromatography in THF [poly(methyl methacrylate) standard].

Fig. S1. ¹H NMR spectra of the IBVE/MA copolymers obtained with BEETC/V-70/EtAl(ODBP)₂ in toluene at 20 °C: $[MA]_0 = 1.5$ M and $[IBVE]_0 = 1.5$ M (for A and B); $[MA]_0 = 1.0$ M and $[IBVE]_0 = 5.0$ M (for C); $[BEETC]_0 = 20$ mM; $[V-70]_0 = 5.0$ mM; $[EtAl(ODBP)_2]_0 = 0$ (for A) or 200 mM (for B and C).

Fig. S2. RAFT radical copolymerizations of IBVE and various acrylates with CPETC/EtAl(ODBP)₂ shown in Table S1.

Fig. S3. Copolymer composition curves for the free radical copolymerizations of IBVE (M₁) with various acrylates (M₂) and in the presence or absence of EtAl(ODBP)₂: $[M_{total}]_0 = 3.0$ M, $[V-70]_0 = 20$ mM (for 20°C), $[AIBN]_0 = 20$ mM (for 60°C), $[EtAl(ODBP)_2]_0 = 0$ or 200 mM in toluene at 20 or 60 °C. Each copolymer was evaluated at low monomer conversion (<10%).

Fig. S4. Kelen–Tüdõs plots for determining the monomer reactivity ratio of IBVE (M_1) and various acrylates (M_2) and in the presence or absence of EtAl(ODBP)₂.

Fig. S5. Interaction between MA and EtAl(ODBP)₂ observed in the ¹H NMR spectra (toluene- d_8 , 25 °C) from the changes in the acryloyl proton (*c*) chemical shifts in the presence or absence of IBVE: [MA]₀ = 100 mM, [IBVE]₀ = 0 or 100 mM, [EtAl(ODBP)₂]₀ = 0–400 mM.

Fig. S6. ¹H NMR spectra (CDCl₃) of the one-shot kinetic block copolymers of IBVE and MA obtained with BEETC/V-70/EtAlCl₂ in toluene (including 9.8 vol% ethyl acetate) at 20 °C: $[MA]_0 = 2.0$ M; $[IBVE]_0 = 2.0$ M; $[BEETC]_0 = 40$ mM; $[V-70]_0 = 10$ mM; $[EtAl(ODBP)_2]_0 = 7.5$ mM. The monomer conversions were 1%/45% (A) and 77%/99% (B) for MA/IBVE, respectively.

Fig. S7. ¹H NMR spectra (CDCl₃) of the VAc/IBVE copolymers obtained with BEEX/V-70/ZnCl₂ in ethyl acetate at 20 °C: $[VAc]_0 = 3.0$ M and $[IBVE]_0 = 3.0$ M (for A and B); $[VAc]_0 = 4.0$ M and $[IBVE]_0 = 2.0$ M (for C); $[BEEX]_0 = 60$ mM; $[V-70]_0 = 60$ (for A and B) or 30 (for C) mM; $[ZnCl_2]_0 = 0$ (for A), 1.25 (for B) or 5.0 mM (for C).