Electronic Supplementary Information

Photoresponsive AA/BB supramolecular polymers comprised of

stiff-stilbene based guests and bispillar[5]arenes

Yuan Wang^{abc}, Cai-Li Sun ^{abc}, Li-Ya Niu^b, Li-Zhu Wu^a, Chen-Ho Tung^a, Yu-Zhe Chen*^a, Qing-Zheng Yang*^{a,b}

^a Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
^b Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.

^c University of the Chinese Academy of Sciences, Beijing 100049, China.

Contents

2. Absorption and emission spectra of Z-G and E-G.53. COSY spectra of Z-G + H and E-G + H at 150 mM.64. ROESY spectra of Z-G + H and E-G + H at 150 mM.75. DOSY spectra of Z-G + H and E-G + H at 5-150 mM.86. Schematic illustration of assembly of 1:1 mixture of E -G + H at < 12 mM.147. DLS experiments158. Assembly/disassembly behaviour of the AA/BB supramolecular polymers (20 mM by photo irradiation.159. Z/E isomerization ratio at different irradiation time.1710. UV spectra of 1:1 mixture of Z-G + H at 100 mM.1711. References.18	1. NMR and HR-ESI-MS spectra of compound Z-G, E-G and H.	2	
3. COSY spectra of Z -G + H and E -G + H at 150 mM.64. ROESY spectra of Z -G + H and E -G + H at 150 mM.75. DOSY spectra of Z -G + H and E -G + H at 5-150 mM.86. Schematic illustration of assembly of 1:1 mixture of E -G + H at < 12 mM.	2. Absorption and emission spectra of <i>Z</i> -G and <i>E</i> -G.	5	
4. ROESY spectra of Z -G + H and E -G + H at 150 mM.75. DOSY spectra of Z -G + H and E -G + H at 5-150 mM.86. Schematic illustration of assembly of 1:1 mixture of E -G + H at < 12 mM.	3. COSY spectra of Z -G + H and E -G + H at 150 mM.	6	
5. DOSY spectra of Z -G + H and E -G + H at 5-150 mM.86. Schematic illustration of assembly of 1:1 mixture of E -G + H at < 12 mM.	4. ROESY spectra of Z -G + H and E -G + H at 150 mM.	7	
6. Schematic illustration of assembly of 1:1 mixture of E -G + H at < 12 mM.	5. DOSY spectra of Z -G + H and E -G + H at 5-150 mM.	8	
7. DLS experiments158. Assembly/disassembly behaviour of the AA/BB supramolecular polymers (20 mM by photo irradiation.159. Z/E isomerization ratio at different irradiation time.1710. UV spectra of 1:1 mixture of Z-G + H at 100 mM.1711. References.18	6. Schematic illustration of assembly of 1:1 mixture of E -G + H at < 12 mM.	14	
8. Assembly/disassembly behaviour of the AA/BB supramolecular polymers (20 mM by photo irradiation.159. Z/E isomerization ratio at different irradiation time.1710. UV spectra of 1:1 mixture of Z -G + H at 100 mM.1711. References.18	7. DLS experiments	15	
by photo irradiation.159. Z/E isomerization ratio at different irradiation time.1710. UV spectra of 1:1 mixture of Z -G + H at 100 mM.1711. References.18	8. Assembly/disassembly behaviour of the AA/BB supramolecular polymers (20 mM)		
9. Z/E isomerization ratio at different irradiation time.1710. UV spectra of 1:1 mixture of Z -G + H at 100 mM.1711. References.18	by photo irradiation.	15	
10. UV spectra of 1:1 mixture of Z-G + H at 100 mM. 17 11. References. 18	9. Z/E isomerization ratio at different irradiation time.	17	
11. References.	10. UV spectra of 1:1 mixture of Z -G + H at 100 mM.	17	
	11. References.	18	

1. NMR and HR-ESI-MS spectra of compound Z-G, E-G and H.

Chart S1. The structure of compound *Z*-**G**.

Figure S1. ¹H NMR spectrum of **Z-G** (CDCl₃, 400 MHz).

Figure S2. ¹³C NMR spectrum of **Z-G** (CDCl₃, 100 MHz).

Figure S3. HR-ESI-MS spectrum of Z-G.

E-G

Chart S2. The structure of compound *E*-G.

The integral area of the *Z*-G proton signal (7.78 ppm) in ¹H NMR spectra is only about 3% of the integral area of *E*-G proton signal, which revealed the almost complete conversion.^[1]

Figure S4. ¹H NMR spectrum of *E*-G (CDCl₃, 400 MHz).

Chart S3. The structure of compound H.

Figure S5. ¹H NMR spectrum of **H** (CDCl₃, 400 MHz).

2. Absorption and emission spectra of Z-G and E-G.

Figure S6. The UV-vis spectra of **Z**-G and **E**-G in $CH_2Cl_2(1.0 \times 10^{-5} \text{ mol/L})$.

Figure S7. The fluorescence spectra of **Z**-**G** and *E*-**G** in CH₂Cl₂ (1.0×10⁻⁵ mol/L, $\lambda_{ex} =$ 340 nm).

3. COSY spectra of Z-G + H and E-G + H at 150 mM.

Figure S8. COSY spectrum of a chloroform-d solution of 150 mM Z-G + H.

Figure S9. COSY spectrum of a chloroform-d solution of 150 mM E-G + H.

4. ROESY spectra of Z-G + H and E-G + H at 150 mM.

Figure S10. ROESY spectrum of a chloroform-d solution of 150 mM Z-G + H.

Figure S11. ROESY spectrum of a chloroform-d solution of 150 mM E-G + H.

5. DOSY spectra of Z-G + H and E-G + H at 5-150 mM.

Figure S12. DOSY spectra of *Z***-G** + **H** at 5, 20, 40, 70, 100, 150 mM in CDCl₃. (from ¹H NMR spectroscopy 600 MHz, CDCl₃, 298 K).

Figure S13. DOSY spectra of E-G + H at 5, 20, 40, 70, 100, 150 mM in CDCl₃. (from ¹H NMR spectroscopy 600 MHz, CDCl₃, 298 K).

The observation of a sharp decrease in the diffusion coefficient upon increasing concentration of 1:1 mixture of E-G + H suggested the formation of linear polymers.^[2]

We also estimate the average degree of polymerization (DP) of supramolecular polymers at 150 mM roughly from DOSY experiments using following equation:

$$DP = (D_A/D)^3$$

where D_A is the average diffusion coefficient for the AA and BB monomer (3.97 $\times 10^{-10}$ m²s⁻¹ at 150 mM), D is the diffusion coefficient for the sample of supramolecular polymer measured by DOSY (3.83 $\times 10^{-11}$ m²s⁻¹ at 150 mM). The average degree of polymerization was calculated to be 1110. We realized that this is a very rough estimation.^[3]

6. Schematic illustration of assembly of 1:1 mixture of *E*-G + H at < 12 mM.

Figure S14. Schematic illustration of assembly of 1:1 mixture of E-G + H at < 12 mM.

Figure S15. The diameter of supramolecular polymers from 1:1 mixture of *E*-G and H at 50 mM determined from DLS.

8. Assembly/disassembly behaviour of the AA/BB supramolecular polymers (20

mM) by photo irradiation.

Figure S16. (a) The DOSY spectrum of 1:1 mixture of Z-G + H at 20 mM. (b) The DOSY spectrum of the mixture after irradiation by 387 nm light. (c) The DOSY spectrum of the mixture from (b) after irradiation by 360 nm light. (600 MHz, CDCl₃, 298 K).

The diffusion constant (D) of the 20 mM mixture of **Z**-**G** and **H** was $(3.57 \pm 0.07) \times 10^{-10} \text{ m}^2\text{s}^{-1}$. After irradiation by 387 nm light for 80 min, the diffusion constant (D) of the mixture was determined to be $(2.83 \pm 0.12) \times 10^{-10} \text{ m}^2\text{s}^{-1}$. The decreasing diffusion constant (D) indicated the possible formation of polymers due to the transformation from **Z**-**G** to **E**-**G** by photo-irradiation. The reverse isomerization was achieved by irradiation at > 360 nm. The diffusion constant (D) of the mixture was increased to $(3.15 \pm 0.07) \times 10^{-10} \text{ m}^2\text{s}^{-1}$. The changing of D in the mixture of **Z**-**G** + **H** before and after irradiation by 387 nm and then 360 nm at 20 mM has similar trend with those at 100 mM.

9. Z/E isomerization ratio at different irradiation time.

Figure S17. (a) The percentage of E-P upon irradiation of Z-P (20 mM) for 0 min, 20 min, 40 min, 60 min and 80 min. (b) The percentage of E-P when irradiation of Z-P (100 mM) for 0 min, 60 min, 140 min, 250 min, 270 min and 300 min.

We determined the Z/E isomerization ratio by ¹H NMR at different irradiation time at 20 mM. The percentage of E-P is increasing upon irradiation of Z-P at 387 nm. The percentage of E-P is 97% at photostationary state. We also determined the Z/E isomerization ratio by ¹H NMR at different irradiation time at 100 mM. The photoisomerization reaction reached its photostationary state with 95% of E-P after irradiating Z-P for 4.5 h.

Figure S18. The UV-vis spectra of 1:1 mixture of Z-G + H at 100 mM in CHCl₃ after stay for 0 h and 4.5 h under dark.

11. References.

1. Sergey Akbulatov, Yancong Tian and Roman Boulatov, J. Am. Chem. Soc., 2012, 134, 7620–7623.

2. Chunju Li, Kang Han, Jian Li, Yanyan Zhang, Wei Chen, Yihua Yu and Xueshun Jia, *Chem. -Eur. J.*, 2013, **19**, 11892-11897.

3. Xiaoguang Liu, Jiang-Fei Xu, Zhiqiang Wang and Xi Zhang, *Polym. Chem.*, 2016, 7, 2333-2336.