## Supporting Information

## Construction of stimuli-responsive supramolecular gel via bispillar[5]arene-based multiple interactions

Tai-Bao Wei*, Jin-Fa Chen, Xiao-Bin Cheng, Hui Li, Bing-Bing Han, Hong Yao, YouMing Zhang and Qi Lin*

Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China; Key Laboratory of Polymer Materials of Gansu Province; College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu,

[^0]$P$.
$R$.
China

## 1. Materials and methods

1,4-Dimethoxybenzene, boron trifluoride ethyl ether complex, 1,6dibromohexane, and 1,10 -dibromodecane were reagent grade and used as received. Solvents were either employed as purchased or dried by $\mathrm{CaCl}_{2} .{ }^{1} \mathrm{H}$ NMR spectra were recorded on a Mercury-600BB spectrometer at 600 MHz and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Mercury-600BB spectrometer at 150 MHz . Chemical shifts are reported in ppm downfield from tetramethylsilane (TMS, $\delta$ scale with solvent resonances as internal standards). Mass spectra were performed on a Bruker Esquire 3000 plus mass spectrometer (Bruker-FranzenAnalytik GmbH Bremen, Germany) equipped with ESI interface and ion trap analyzer. The X-ray diffraction analysis (XRD) was performed in a transmission mode with a Rigaku RINT2000 diffractometer equipped with graphite monochromated CuKa radiation ( $\lambda=1.54073 \AA$ ). The morphologies and sizes of the xerogels were characterized using field emission scanning electron microscopy (FE-SEM, JSM-6701F) at an accelerating voltage of 8 kV .

## 2. Synthesis of bispillar[5]arene TP5



Scheme S1 Synthesis of bispillar[5]arene TP5.
Synthesis of compound 1: In a 500 mL round-bottom flask, 4-Methoxyphenol ( $2.48 \mathrm{~g}, 20.0 \mathrm{mmol}$ ), $\mathrm{K}_{2} \mathrm{CO}_{3}(8.4 \mathrm{~g}, 60 \mathrm{mmol})$, KI ( 3.3 g , 20 mmol ), 1,6 -dibromohexane ( $12.2 \mathrm{~g}, 50 \mathrm{mmol}$ ) and acetone ( 400.0 mL ) were added. The reaction mixture was stirred at reflux for 2 days. After the solid was filtered off, the solvent was evaporated and the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Column chromatography (silica gel; petroleum ether : ethyl acetate $=20: 1$ ) afforded a white solid ( $4.46 \mathrm{~g}, 78 \%$ ). ${ }^{1} \mathrm{H}$ NMR ( 600 MHz, DMSO- $d_{6}$ ) $\delta 6.82(\mathrm{~s}, 4 \mathrm{H}), 3.86$ ( $\mathrm{s}, 2 \mathrm{H}$ ), 3.67 (s, 3H), 3.52 ( $\mathrm{s}, 2 \mathrm{H}$ ), $1.88-1.71(\mathrm{~m}, 2 \mathrm{H}), 1.71-1.62(\mathrm{~m}, 2 \mathrm{H}), 1.54-1.30(\mathrm{~m}, 4 \mathrm{H})$.


Fig. S1 ${ }^{1} \mathrm{H}$ NMR spectra ( 600 MHz , DMSO- $d_{6}$ ) of compound 1 .
Synthesis of a copillar[5]arene 2: To a solution of compound $\mathbf{1}(1.43 \mathrm{~g}, 5.0$ $\mathrm{mmol})$ and 1,4 -dimethoxybenzene $(2.76 \mathrm{~g}, \quad 20.0 \mathrm{mmol})$ in 1,2-dichloroethane ( 80 mL ), paraformaldehyde ( $0.75 \mathrm{~g}, 25.0 \mathrm{mmol}$ ) was added under nitrogen atmosphere. Then boron trifluoride diethyl etherate $(6.75 \mathrm{~mL}, 25 \mathrm{mmol})$ was added to the solution and the mixture was stirred at room temperature for 2 h and concentrated by rotary evaporation. The resultant oil was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed twice with $\mathrm{H}_{2} \mathrm{O}$. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to afford the crude product, which was isolated by flash column chromatography using petroleum ether/ethyl acetate ( $20: 1, v / v$ ) to give $2(1.3 \mathrm{~g}, 29 \%)$ as a white solid. ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.96-6.79(\mathrm{~m}, 10 \mathrm{H}), 3.78(\mathrm{t}, \mathrm{J}=10.7 \mathrm{~Hz}$, $37 \mathrm{H}), 3.70(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 6 \mathrm{H}), 1.54-1.46(\mathrm{~m}, 2 \mathrm{H}), 1.26(\mathrm{~s}, 2 \mathrm{H}), 0.88(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}$, $2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $151 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ 150.64(s), 128.07(s), 113.98(s), 55.62(s), 29.57(s). ESI-MS m/z: $(\mathrm{M}+\mathrm{H})^{+}$Calcd for $\mathrm{C}_{50} \mathrm{H}_{60} \mathrm{O}_{10} \mathrm{Br} 900.9$; Found 901.1.


Fig. S2 ${ }^{1} \mathrm{H}$ NMR spectra( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of a copillar[5]arene 2.


Fig. S3 ${ }^{13} \mathrm{C}$ NMR spectra( $151 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of a copillar[5]arene $\mathbf{2}$.

## Generic Display Report



Fig. S4 mass data of a copillar[5]arene 2.
Synthesis of compound intermediate 3: Copillar[5]arene 2 ( $0.9 \mathrm{~g}, 1 \mathrm{mmol}$ ), and 4 -Hydroxybenzaldehyde $(0.122 \mathrm{~g}, 1 \mathrm{mmol}$ ) was dissolved in THF ( 80
$\mathrm{mL}) . \mathrm{K}_{2} \mathrm{CO}_{3}$ ( $0.138 \mathrm{~g}, 1 \mathrm{mmol}$ ) was added and the reaction mixture was stirred at reflux for 2 days. After solvent was evaporated and the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Column chromatography (silica gel; petroleum ether : ethyl acetate $=20: 1$ ) afforded a white solid ( $0.42 \mathrm{~g}, 45 \%$ ). ${ }^{1} \mathrm{H}$ NMR ( 600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.88(\mathrm{~s}, 1 \mathrm{H}), 7.82(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.94(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H})$, $6.77(\mathrm{~d}, \mathrm{~J}=9.7 \mathrm{~Hz}, 10 \mathrm{H}), 3.87(\mathrm{~s}, 4 \mathrm{H}), 3.77(\mathrm{~s}, 10 \mathrm{H}), 3.65(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 27 \mathrm{H})$, $3.60(\mathrm{~s}, 4 \mathrm{H}), 1.76(\mathrm{~s}, 2 \mathrm{H}), 1.25(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $151 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 128.21$ (s), 114.71 (s), 114.05 (s), 55.74 (s), 29.64 (s). ESI-MS m/z: $\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}$ Calcd for $\mathrm{C}_{57} \mathrm{H}_{68} \mathrm{O}_{12} \mathrm{~N} 958.4736$; Found 958.4744.


Fig. S5 ${ }^{1} \mathrm{H}$ NMR spectra $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound intermediate 3 .


Fig. S6 ${ }^{13} \mathrm{C}$ NMR spectra( $151 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of compound intermediate $\mathbf{3}$.


Fig. S7 High resolution mass data of compound intermediate 3.

Synthesis of bispillar[5]arene TP5: Compound intermediate $\mathbf{3}$ ( 1.5 mmol ), terephthalic dihydrazide ( 0.5 mmol ) and p-toluenesulfonic acid $(0.05 \mathrm{mmol}$, as a catalyst) were added to ethanol ( 50 mL ) and chloroform $(10 \mathrm{~mL})$. Then the reaction mixture was stirred under refluxed conditions for 24 hours, after the solvent was evaporated and the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Column chromatography (silica gel; petroleum ether : ethyl acetate $=1: 1$ ) afforded a slightly yellow solid ( $0.97 \mathrm{~g}, 95 \%$ ). ${ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.29(\mathrm{~d}, \mathrm{~J}=63.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.03(\mathrm{~d}, \mathrm{~J}=45.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.75(\mathrm{~d}, \mathrm{~J}=35.0 \mathrm{~Hz}, 6 \mathrm{H})$, $7.51(\mathrm{~d}, \mathrm{~J}=15.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{~s}, 4 \mathrm{H}), 6.77(\mathrm{dd}, \mathrm{J}=14.4,7.6 \mathrm{~Hz}, 20 \mathrm{H}), 3.87(\mathrm{~d}$, $\mathrm{J}=6.2 \mathrm{~Hz}, 8 \mathrm{H}), 3.77(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 20 \mathrm{H}), 3.63(\mathrm{dd}, \mathrm{J}=14.5,4.9 \mathrm{~Hz}, 54 \mathrm{H})$, $1.81-1.76(\mathrm{~m}, 4 \mathrm{H}), 1.70(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 4 \mathrm{H}), 1.54-1.50(\mathrm{~m}, 4 \mathrm{H}), 1.43(\mathrm{~s}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $151 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 150.70(\mathrm{~s}), 128.14(\mathrm{~s}), 114.07(\mathrm{~s}), 111.38-109.26$ (m), 68.62-67.16(m), 55.71(s), 29.67(s), 25.81(s). ESI-MS m/z: (M+H)+ Calcd for $\mathrm{C}_{122} \mathrm{H}_{135} \mathrm{O}_{24} \mathrm{~N}_{4}$ 2040.9494; Found 2040.9457.


Fig. S8 ${ }^{1} \mathrm{H}$ NMR spectra $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ ) of bispillar[5]arene TP5.


Fig. S9 ${ }^{13} \mathrm{C}$ NMR spectra( $151 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of bispillar[5]arene TP5.


Fig. S10 High resolution mass data of bispillar[5]arene TP5.

## 3. Synthesis of G



G
Scheme S2 Synthesis of G.
Synthesis of compound G: A solution of 1,10-dibromodecane ( $1.89 \mathrm{~g}, 6.3$ mmol ) in $\mathrm{CH}_{3} \mathrm{CN}(30 \mathrm{~mL})$ was added dropwise into a stirred solution of 4,4'bipyridine ( $5.56 \mathrm{~g}, 35.7 \mathrm{mmol}$ ) in $\mathrm{CH}_{3} \mathrm{CN}(50 \mathrm{~mL})$ and refluxed over night. After it cooled, the suspension was filtered. The solid was washed with $\mathrm{CH}_{3} \mathrm{CN}$ and then dried in an oven to afford a pale green solid $\mathbf{G}(3.3 \mathrm{~g}, 86 \%)$. ${ }^{1} \mathrm{H}$ NMR ( $\left.600 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 8.81(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 4 \mathrm{H}), 8.62(\mathrm{~d}, \mathrm{~J}=1.4 \mathrm{~Hz}, 4 \mathrm{H})$, $8.25(\mathrm{~s}, 4 \mathrm{H}), 7.76(\mathrm{~d}, \mathrm{~J}=1.5 \mathrm{~Hz}, 4 \mathrm{H}), 4.50(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, 4 \mathrm{H}), 1.90(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}$, 4 H ), 1.17 (d, J=38.2Hz, 12H).


Fig. S11 ${ }^{1} \mathrm{H}$ NMR spectra $\left(600 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right)$ of $\mathbf{G}$.


Fig. S12 2D NOESY NMR spectrum ( $600 \mathrm{MHz}, 298 \mathrm{~K}$ ) of 2.0 mM TP5 and $\mathbf{G}$ in DMSO- $d_{6}$ solution.


Fig. S13 a mole ratio plot for the complexation between TP5 and G, indicating a 1:2 stoichiometry.


Fig. S14 SEM images of TP5•G gel.


Fig. S15 Fluorescence responses of the supramolecular gel to the presence of various cations.

## Determination of the detection limit

We use the $3 \delta$ way to figure out the detection limit. The process of the analysis as follows.


Fig. S16 The photograph of the linear range.
Linear Equation: $\mathrm{Y}=-704.27417 \mathrm{X}+319.47198 \quad \mathrm{R}^{2}=0.98244$
$\mathrm{S}=704.27 \times 10^{6}$
$\delta=\sqrt{\frac{\sum\left(x_{i}-\bar{x}\right)^{2}}{n-1}}=36.51(n=20)$
K=3
$\mathrm{LOD}=\mathrm{K} \times \delta / \mathrm{S}=1.56 \times 10^{-7} \mathrm{M}$

[^1]
[^0]:    730070,

[^1]:    * Corresponding author. Tel: +86 9317970394.

    E-mail address: weitaibao@,126.com.

