Electronic Supplementary Information (ESI)

Superbase catalyzed regioselective polyhydroalkoxylation of alkynes: A facile route towards functional poly(vinyl ether)s

Jia Wang,^a Baixue Li,^a Dehua Xin,^a Rongrong Hu,^a Zujin Zhao,^a Anjun Qin^{*a} and Ben Zhong Tang^{*ab}

^{*a*} State Key Laboratory of Luminescent Materials and Devices, South China University of *Technology, Guangzhou 510640, China*.

^b Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China.

Contents

Experimental section	S4
Figure S1. (A) TGA thermograms and (B) DSC thermograms of polymers.	. S5
Figure S2. FT-IR spectra of 1a (A), 2a (B) and P1a2a (C).	S6
Figure S3. FT-IR spectra of 1a (A), 2c (B) and P1a2c (C).	S6
Figure S4. FT-IR spectra of 1b (A), 2a (B) and P1b2a (C).	S7
Figure S5. FT-IR spectra of 1b (A), 2b (B) and P1b2b (C).	S7
Figure S6. FT-IR spectra of 1b (A), 2c (B) and P1b2c (C).	S8
Figure S7. FT-IR spectra of 1c (A), 2a (B) and P1c2a (C).	S8
Figure S8. FT-IR spectra of 1c (A), 2b (B) and P1c2b (C).	S9
Figure S9. FT-IR spectra of 1c (A), 2c (B) and P1c2c (C).	S9
Figure S10. ¹ H NMR spectra of 1a (A), 2a (B), and P 1a2a (C) in CDCl ₃ . marked with asterisks.	The solvent peaks are S10
Figure S11. ¹ H NMR spectra of 1a (A), 2c (B), and P 1a2c (C) in CDCl ₃ . marked with asterisks.	The solvent peaks are S11
Figure S12. ¹ H NMR spectra of 1b (A), 2a (B), and P 1b2a (C) in CDCl ₃ . marked with asterisks.	The solvent peaks are S11
Figure S13. ¹ H NMR spectra of 1b (A), 2b (B), and P 1b2b (C) in CDCl ₃ . marked with asterisks.	The solvent peaks are S13
Figure S14. ¹ H NMR spectra of 1b (A), 2c (B), and P 1b2c (C) in CDCl ₃ . marked with asterisks.	The solvent peaks are S14
Figure S15. ¹ H NMR spectra of 1c (A), 2a (B), and P 1c2a (C) in CDCl ₃ . marked with asterisks.	The solvent peaks are S15
Figure S16. ¹ H NMR spectra of 1c (A), 2b (B), and P 1c2b (C) in CDCl ₃ . marked with asterisks.	The solvent peaks are S16
Figure S17. ¹ H NMR spectra of 1c (A), 2c (B), and P 1c2c (C) in CDCl ₃ . marked with asterisks.	The solvent peaks are S17
Figure S18. ¹³ C NMR spectra of 1a (A), 2a (B), and P 1a2a (C) in CDCl ₃ . marked with asterisks.	The solvent peaks are S18

Figure S19. ¹³C NMR spectra of **1a** (A), **2c** (B), and P**1a2c** (C) in CDCl₃. The solvent peaks are marked with asterisks. S19

Figure S20. ¹³C NMR spectra of **1b** (A), **2a** (B), and P**1b2a** (C) in CDCl₃. The solvent peaks are marked with asterisks. S20

Figure S21. ¹³C NMR spectra of **1b** (A), **2b** (B), and P**1b2b** (C) in CDCl₃. The solvent peaks are marked with asterisks. S21

Figure S22. ¹³C NMR spectra of **1b** (A), **2c** (B), and P**1b2c** (C) in CDCl₃. The solvent peaks are marked with asterisks. S22

Figure S23. ¹³C NMR spectra of **1c** (A), **2a** (B), and P**1c2a** (C) in CDCl₃. The solvent peaks are marked with asterisks. S23

Figure S24. ¹³C NMR spectra of **1c** (A), **2b** (B), and P**1c2b** (C) in CDCl₃. The solvent peaks are marked with asterisks. S24

Figure S25. ¹³C NMR spectra of **1c** (A), **2c** (B), and **P1c2c** (C) in CDCl₃. The solvent peaks are marked with asterisks. S25

Figure S26. PL spectra of P1a2a (A), P1a2c (B) and P1c2a (C) in THF/water mixture with different water fraction (f_w , in volume percentage, vol%). Excitation concentration: 10 μ M; λ_{ex} (P1a2a, P1a2c): 345 nm, λ_{ex} (P1c2a): 325 nm.

Figure S27. (A) UV absorption spectra of P**1a2a**, P**1a2b**, P**1a2c** and P**1c2a** in THF solution and rhodamine B in water solution. Concentration: 10 µM. S27

Reference.

S27

Experimental section

Synthesis of 1,2-bis(4-ethynylphenyl)-1,2-diphenylethene (1a).

1a was synthesized according to our previously published procedures.¹

Synthesis of bis(4-ethynylphenyl)methanone (1b).

1b was synthesized according to our previously published procedures.^{1 1}H NMR (CDCl₃, 500 MHz), *δ* (TMS, ppm):7.77–7.73 (m, 4H), 7.62–7.58 (m, 4H), 3.26 (s, 2H). ¹³C NMR (CDCl₃, 125 MHz), *δ* (TMS, ppm): 195.02, 137.32, 132.39, 130.22, 126.81, 83.05, 80.27. FT-IR (KBr disk), *v* (cm⁻¹): 3304, 3283, 2105, 1938, 1645, 1600, 1551, 1404, 1309, 1289, 1176, 1140, 1116, 1018, 971, 932, 863, 839, 766, 680, 658, 643, 628, 551, 520, 493.

Synthesis of 4-ethynyl-N-(4-ethynylphenyl)-N-phenylaniline (1c)

1c was synthesized according to our previously published procedures.²

Drug loading and release.

50 mg of P1a2b and 5 mg of rhodamine B were dissolved in 10 mL of DCM. Then, the solution was added into 200 mL of hexane dropwise under vigorous stirring. After standing for 1 h, the precipitates were filtered and washed with methanol to remove rhodamine B on the precipitates surface. The P1a2b loaded rhodamine B was obtained after drying in vacuum at 40 °C to a constant weight.

5 mg of P1a2b/ rhodamine B complex was added into 300 mL of hydrochloric acid buffer solution and water at 37±0.5 °C, respectively and incubate for 2 h. Afterwards, 3 mL of supernate was analyzed by photoluminescence spectra.

Figure S1. (A) TGA thermograms and (B) DSC thermograms of polymers P1a2a–P1c2c. T_d and T_g represent the temperature of 5% weights loss and the glass transition temperature, respectively.

Figure S2. FT-IR spectra of 1a (A), 2a (B) and P1a2a (C).

Figure S3. FT-IR spectra of 1a (A), 2c (B) and P1a2c (C).

Figure S4. FT-IR spectra of 1b (A), 2a (B) and P1b2a (C).

Figure S5. FT-IR spectra of 1b (A), 2b (B) and P1b2b (C).

Figure S6. FT-IR spectra of 1b (A), 2c (B) and P1b2c (C).

Figure S7. FT-IR spectra of 1c (A), 2a (B) and P1c2a (C).

Figure S8. FT-IR spectra of 1c (A), 2b (B) and P1c2b (C).

Figure S9. FT-IR spectra of 1c (A), 2c (B) and P1c2c (C).

Figure S10. ¹H NMR spectra of 1a (A), 2a (B), and P1a2a (C) in CDCl₃. The solvent peaks are marked with asterisks.

Figure S11. ¹H NMR spectra of **1a** (A), **2c** (B), and P**1a2c** (C) in CDCl₃. The solvent peaks are marked with asterisks.

Figure S12. ¹H NMR spectra of **1b** (A), **2a** (B), and P**1b2a** (C) in CDCl₃. The solvent peaks are marked with asterisks.

Figure S13. ¹H NMR spectra of **1b** (A), **2b** (B), and P**1b2b** (C) in CDCl₃. The solvent peaks are marked with asterisks.

Figure S14. ¹H NMR spectra of **1b** (A), **2c** (B), and P**1b2c** (C) in CDCl₃. The solvent peaks are marked with asterisks.

Figure S15. ¹H NMR spectra of **1c** (A), **2a** (B), and P**1c2a** (C) in CDCl₃. The solvent peaks are marked with asterisks.

Figure S16. ¹H NMR spectra of **1c** (A), **2b** (B), and P**1c2b** (C) in CDCl₃. The solvent peaks are marked with asterisks.

Figure S17. ¹H NMR spectra of **1c** (A), **2c** (B), and P**1c2c** (C) in CDCl₃. The solvent peaks are marked with asterisks.

Figure S18. ¹³C NMR spectra of 1a (A), 2a (B), and P1a2a (C) in CDCl₃. The solvent peaks are marked with asterisks.

Figure S19. ¹³C NMR spectra of 1a (A), 2c (B), and P1a2c (C) in CDCl₃. The solvent peaks are marked with asterisks.

Figure S20. ¹³C NMR spectra of **1b** (A), **2a** (B), and P**1b2a** (C) in CDCl₃. The solvent peaks are marked with asterisks.

Figure S21. ¹³C NMR spectra of **1b** (A), **2b** (B), and P**1b2b** (C) in CDCl₃. The solvent peaks are marked with asterisks.

Figure S22. ¹³C NMR spectra of **1b** (A), **2c** (B), and P**1b2c** (C) in CDCl₃. The solvent peaks are marked with asterisks.

Figure S23. ¹³C NMR spectra of **1c** (A), **2a** (B), and **P1c2a** (C) in CDCl₃. The solvent peaks are marked with asterisks.

Figure S24. ¹³C NMR spectra of **1c** (A), **2b** (B), and P**1c2b** (C) in CDCl₃. The solvent peaks are marked with asterisks.

Figure S25. ¹³C NMR spectra of **1c** (A), **2c** (B), and P**1c2c** (C) in CDCl₃. The solvent peaks are marked with asterisks.

Figure S26. PL spectra of P1a2a (A), P1a2c (B) and P1c2a (C) in THF/water mixture with different water fraction (f_w , in volume percentage, vol%). Excitation concentration: 10 μ M; λ_{ex} (P1a2a, P1a2c): 345 nm, λ_{ex} (P1c2a): 325 nm.

Figure S27. (A) UV absorption spectra of P1a2a, P1a2b, P1a2c and P1c2a in THF solution and rhodamine B in water solution. Concentration: 10 µM.

Reference

1. R. Hu, J. W. Y. Lam, J. Liu, H. H. Y. Sung, I. D. Williams, Z. Yue, K. S. Wong, M. M. F. Yuen and B. Z. Tang, *Polym. Chem.*, 2012, **3**, 1481–1489.

2. B. Yao, J. Mei, J. Li, J. Wang, H. Wu, J. Z. Sun, A. Qin and B. Z. Tang, *Macromolecules*, 2014, **47**, 1325–1333.