## **Supporting Information**

## Main Chain Copolysiloxane with Terthiophene and Perylenediimide Units: Synthesis, Characterization and Electrical Memory

Zhen Chen,<sup>a</sup> Tingjie Zhang, <sup>a</sup> Yi Zhang, <sup>a</sup> Zhongjie Ren, <sup>a,\*</sup> Jianming Zhang, <sup>b</sup> Shouke

Yan<sup>a</sup>,\*

<sup>a</sup>State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China. E-mail: <u>renzj@mail.buct.edu.cn</u>, <u>skyan@mail.buct.edu.cn</u>.

<sup>b</sup> Key Laboratory of Rubber-Plastics, Qingdao University of Science & Technology, Qingdao, 266042, China.

## **Table of Contents**

| Figure S1. <sup>1</sup> HNMR of 1,6,7,12-tetrachloro-N,N'-bis(ethoxyldimethylsilyl)propyl-perylene-3,4,9,10-  |
|---------------------------------------------------------------------------------------------------------------|
| tetracarboxylic acid diimide                                                                                  |
| Figure S2. <sup>1</sup> HNMR of 1,6,7,12-tetrachloro-N,N'-bis(hydroxyldimethylsilyl)propyl-perylene-3,4,9,10- |
| tetracarboxylic acid diimide                                                                                  |
| Figure S3. <sup>1</sup> HNMR of of 5,5"-bis(dimethylsilyl)-2,2':5',2"-terthiopheneS-4                         |
| Figure S4. MALDI-TOF MS of PBIClSi-alt-PTSiS-4                                                                |
| Figure S5. J-V curves of the ITO/ PBIClSi-alt-PTSi /Al memory. (a) positive sweep for the first time; (b)     |
| negative sweep for the first time                                                                             |
| Figure S6. The On and Off state current as a functiona of device area                                         |
| Figure S7. J-V characteristics of the memory device of ITO/ PBICISi-alt-PTSi /Au with different film          |
| thicknesses. (a) 18 nm; (b) 30 nm; (c) 80 nm; (d) 120 nm; (e) 180 nm.the memory device of ITO/                |
| PBICISi-alt-PTSi/Au                                                                                           |
| Figure S8. XPS spectra of PBIClSi-alt-PTSi film with applied 6 V bias and without bias: (a) C1s, (b)          |
| N1s, (c) Si2p, (d) S2p                                                                                        |
| Figure S9. Configuration of PBICISi-alt-PTSi with four units optimized by materials                           |
| studio                                                                                                        |



**Figure S1**. <sup>1</sup>HNMR of 1,6,7,12-tetrachloro-N,N'-bis(ethoxyldimethylsilyl)propylperylene-3,4,9,10-tetracarboxylic acid diimide.



**Figure S2**. <sup>1</sup>HNMR of 1,6,7,12-tetrachloro-N,N'-bis(hydroxyldimethylsilyl)propylperylene-3,4,9,10-tetracarboxylic acid diimide.



Figure S3. <sup>1</sup>HNMR of of 5,5"-bis(dimethylsilyl)-2,2':5',2"-terthiophene.



Figure S4. MALDI-TOF MS of PBIClSi-alt-PTSi.



**Figure S5** *J-V* curves of the ITO/ PBIClSi-alt-PTSi (50 nm) /Al memory. (a) positive sweep for the first time; (b) negative sweep for the first time.



Figure S6. The On and Off state current as a functiona of device area.



**Figure S7**. *J-V* characteristics of the memory device of ITO/ PBIClSi-alt-PTSi /Au with different film thicknesses. (a) 18 nm; (b) 30 nm; (c) 80 nm; (d) 120 nm; (e) 180 nm.



**Figure S8**. XPS spectra of PBIClSi-alt-PTSi film with applied 6 V bias and without bias: (a) C1s, (b) N1s, (c) Si2p, (d) S2p.



Figure S9. Configuration of PBIClSi-alt-PTSi with four units optimized by materials studio.