Electronic Supplementary Information

Stimuli-Responsive Methionine-Based Zwitterionic Methacryloyl Sulfonium Sulfonate

Monomer and Corresponding Antifouling Polymer with Tunable Thermosensitivity

Tanmoy Maji, Sanjib Banerjee, Avijit Bose and Tarun K. Mandal*

Polymer Science Unit, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700

032, India

Contents		Page No.
Table S1.	Effect of Anions and its concentrationsat Different pHs.	S 1
Figure S1.	¹ H NMR spectrum of Boc-L-Methionine	S2
Figure S2.	ESI-MS spectrum of Boc-L-Methionine	S3
Figure S3.	¹ H NMR spectrum of METMA	S4
Figure S4.	¹³ C NMR spectrum of METMA	S5
Figure S5.	ESI-MS spectrum of METMA	S6
Figure S6.	¹ H NMR spectrum of METMASPS	S7
Figure S7.	¹³ C NMR spectrum METMASPS	S 8
Figure S8.	ESI-MS spectrum of METMASPS	S9
Figure S9.	FTIR spectra of (a) METMA (b) METMASPS and (c) PMETMASPS	S10
Figure S10.	¹ H NMR spectrum of PMETMASPS	S11
Figure S11.	SEC traces of (a) PMETMASPS ₁₀₀ ,water with 0.1 M LiBr	S12
Figure S12.	(A) Turbidity curvesMETMASPS pH of the solution	S12
Figure S13.	Zeta potentials of of 1.0 wt % aqueousat different pHs at 25 °C.	S13
Figure S14.	Turbidity curves of PMETMASPS ₅₀ (A) SO_4^{2-} and (B) $H_2PO_4^{-}$	S13
Figure S15.	Turbidity curves of PMETMASPS ₅₀ (A) Ct ³⁻ and (B) Ac ⁻ .	S14
Figure S16.	Variation of hydrodynamic diametersby DLS at 25 °C	S14
Figure S17.	Variation of hydrodynamic diametersby DLS measurement	S15
Figure S18.	Turbidity curves of PMETMASPS ₇₅ with varying cations	S15
Figure S19.	Turbidity curves of zwitterionic PMETMASPS ₅₀ at different pHs.	S16
Figure S20.	MALDI-TOF-MS spectrum of PNIPAM	S16

рН	Anions	CSC ([M])		Concentration	Cloud point
		Transmittance Study	DLS Study	([M])	(<i>T_{cp}</i>) (°C)
3.5	SO4 ²⁻	0.45	0.45	0.45	13.0
				0.50	25.4
				0.55	35.0
				0.65	53.4
				0.72	66.6
	H ₂ PO ₄	0.50	0.50	0.50	13.5
				0.65	37.0
				0.80	61.5
8.0	Ct ³⁻	Ct^{3-} 0.27 $0.$ Ac^{-} 2.3 $2.$	0.27	0.27	18.8
				0.30	35.8
				0.34	50.7
				0.37	66.6
	Ac			2.30	17.2
			2.25	2.55	40.1
				2.80	64.4
	SO4 ²⁻	O ₄ ²⁻ 0.38	0.36	0.38	16.7
				0.45	43.4
				0.48	55.1
				0.53	68.2

Table S1. Effect of anions and its concentrations on the phase behaviour of aqueousPMETMASPS50 solution (1 wt%) at different pHs.

Figure S1. ¹H NMR spectrum of Boc-L-Methionine (Signal at δ 7.2 ppm corresponds to CHCl₃ present in CDCl₃).

Figure S2. ESI-MS spectrum of Boc-Meth-OH ($M/z + H^+ = 271.2$).

Figure S3. ¹H NMR spectrum of Boc-L-methionine-(2-methacryloylethyl)ester (Signal at δ 7.2 ppm corresponds to CHCl₃ present in CDCl₃).

Figure S4. ¹³C NMR spectrum of Boc-L-methionine-(2-methacryloylethyl)ester

Figure S5. ESI-MS spectrum of Boc-L-methionine-(2-methacryloylethyl)ester $(M/z + Na^+ = 384.1)$.

Figure S6. ¹HNMR spectrum of METMASPS (The ¹H NMR 500 MHz, D₂O, signal at δ 4.7 ppm corresponds to water present in D₂O).

Figure S7. ¹³C NMR spectrum of METMASPS (¹³C NMR 500 MHz, D₂O).

Figure S8. ESI-MS spectrum of METMASPS ($M/z + Na^+ = 506.2$).

Figure S9. FTIR spectra of (a) METMA (b) METMASPS and (c) PMETMASPS acquired in ATR mood.

Figure S10. ¹H NMR spectrum of PMETMASPS (The ¹H NMR 500 MHz, D₂O, signal at δ 4.7 ppm corresponds to water present in D₂O).

Figure S11. SEC traces of (a) PMETMASPS₁₀₀, (b) PMETMASPS₇₅, and (c) PMETMASPS₅₀ samples (Table 1). Eluent for SEC was water with 0.1 M LiBr.

Figure S12. (A) Turbidity curves for the aqueous METMASPS monomer solution (1 wt%) at different pHs. (B) The plot of cloud point of the aqueous METMASPS solution (1 wt%) against pH of the solution.

Figure S13. Zeta potentials of of 1.0 wt % aqueous solution of PMETMASPS at different pHs at 25 °C.

Figure S14. Variation of hydrodynamic diameters (measured by DLS) of 1.0 wt % aqueous solution of PMETMASPS₅₀ with increasing different anions concentration at 25 $^{\circ}$ C.

Figure S15. Turbidity curves (at $\lambda = 600$ nm) of zwitterionic PMETMASPS₅₀ (0.1 wt %) in water in presence of different concentration of (A) SO₄²⁻ and (B) H₂PO₄⁻ anions.

Figure S16. Turbidity curves (at $\lambda = 600$ nm) of zwitterionic PMETMASPS₅₀ (0.1 wt %) in water in presence of different concentration of (A) Ct³⁻ and (B) Ac⁻ anions.

Figure S17. Variation of hydrodynamic diameters (measured by DLS) of 1.0 wt % aqueous solution of PMETMASPS₅₀ with increasing temperature in presence of different kosmotropic anions.

Figure S18. Turbidity curves (at $\lambda = 600$ nm) of aqueous 1 wt % zwitterionic PMETMASPS₇₅ in presence of 0.5M SO₄²⁻ ion from various salts at pH 3.5.

Figure S19. Turbidity curves (at $\lambda = 600$ nm) of zwitterionic PMETMASPS₅₀ (0.1 wt %) in water in presence of 0.45 M SO₄²⁻ at different pHs.

Figure S20. MALDI-TOF-MS spectrum of PNIPAM.