Supporting Information

Facile green synthesis of isoindigo-based conjugated polymers using aldol polycondensation

Guobing Zhang,^{abc*} Yanrong Dai,^{ac} Yu Liu,^{ac} Jiaqing Liu,^{ac} Hongbo Lu,^{ac} Longzhen Qiu^{ac*} and Kilwon Cho^b

^aKey Lab of Special Display Technology, Ministry of Education, National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei, 230009, China. gbzhang@hfut.edu.cn

^bDepartment of Chemical Engineering, Pohang University of Science and Technology

(POSTECH) and Center for Advance Soft Electronics (CASE), Pohang 790-784,

South Korea.

^cDepartment of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Key Laboratory of Advance Functional Materials and Devices, Anhui Province, Hefei, 230009, China

Scheme S1. Stille polymerization of PIID-DT and PBIBDF-DT.

Synthesis of PIID-DT (Stille). Tin-monomer M4 (0.1 g, 0.21 mmol), IID (0.23 g, 0.21 mmol), Pd₂(dba)₃ (8 mg), P(o-tol)₃ (10 mg) and toluene (8 mL) were added to a Schlenk tube. The tube was charged with nitrogen through a freeze-pump-thaw cycle three times. The mixture was stirred at 105 °C. The viscosity of mixture became too large after stirring for about five hours. Then the mixture was cooled down to room temperature, and poured into methanol (100 mL) and stirred for 2 h. The precipitate was collected by filtration. The product was purified through Soxhlet extraction using methanol and hexane to remove oligomers. The remaining polymer was extracted with hot chloroform in an extractor for 12 h. After removing the solvent, a blue solid was collected (95 mg, 37.9%). ¹H NMR (400 MHz, Cl₂CDCl₂), σ (ppm): 9.00-9.30 (br, 4H), 6.88-7.50 (br, br, 8H), 3.70-3.88 (br, 4H), 0.98-1.95 (br, 82H), 0.65-0.95 (br, 12H). GPC: $M_n = 20.16$ kDa, PDI = 3.2.

Synthesis of PBIBDF-DT. The same procedure were used as those for PIID-DT. The compound used were Pd₂(dba)₃ (6 mg), P(o-tol)₃ (8 mg) M5 (0.13 g, 0.16 mmol), BIBDF (0.20 g, 0.16 mmol) and toluene (8 mL). The highly viscous black solution was formed after stirring for about 24 h. After workup, black polymers were obtained (0.11 g, 43.3%). ¹H NMR (400 MHz, CDCl₃), σ (ppm): 8.90-9.15 (br, 4H), 6.85-7.20 (br, 6H), 3.65-3.75 (br, 4H), 2.50-2.70 (br, 4H), 0.95-1.95 (br, 122H), 0.65-0.95 (br, 18H). GPC: $M_n = 29.83$ kDa, PDI = 1.5.

	λ_{\max}^{abs} (nm)	λ_{\max}^{abs} (nm)	λ_{onset}^{abs} (nm)	E_g^{opt}
Polymer	(solution)	(thin film)	(thin film)	(eV)
PIID-DT (aldol)	705	709	780	1.59
PIID-DT (Stille)	699	709	780	1.59
PBIBDF-DT (aldol)	824	831	1050	1.18
PBIBDF-DT (Stille)	824	840	1040	1.19

Table S1 Optical properties of polymers synthesized by aldol and Stille polycondensation.

Table S2 Crystallographic parameters for polymer films annealed at 260 °C.

Polymer (Aldol) -	Lamellar spacing (100)		π-π spac	<i>π</i> - <i>π</i> spacing (010)	
	q _z (Å ⁻¹)	d (Å)	q _{xy}	d (Å)	
PIID-DT	0.296	21.21	1.674	3.75	
PBIBDF-DT	0.210	29.79	1.783	3.52	
(Edge on) PBIBDF-DT (Face on)	0.23	27.30	1.782	3.52	

Table S3 The device performances of isoindigo-based polymers made via Stille
 polymerization.

Annealing temperature(°C)			p-channel		
	μ _{h,max} (cm ² V ⁻¹ s ⁻¹)	μ _{h,avg} (cm ² V ⁻¹ s ⁻¹)	I_{on}/I_{off}	V _{th} (V)	
PIID-DT					
RT	0.07	0.05 ± 0.009	9×10 ⁵	-21.1	
180	0.38	0.26 ± 0.064	3×10^{6}	-20.6	
260	0.29	0.20 ± 0.049	1×10 ⁶	-13.3	
PBIBDF-DT					
RT	-	-	-	-	
260	0.60	0.49±0.127	6×10 ⁵	6.0	

Fig. S1 The ¹H NMR spectra of two polymers prepared by aldol and Stille polycondensation.

Fig. S2 TG and DSC curves of two polymers prepared by aldol polycondensation.

Fig. S3 Cyclic voltammograms of PIID-BT made by aldol polycondensation.

The potential were referenced to Ag/Ag^+ and the redox Fc/Fc⁺ was assumed at an absolute energy of 4.8 eV to vacuum. The redox Fc/Fc⁺ was measured under the same conditions as polymer films and was located at 0.05 V related to the Ag/Ag⁺ electrode. The onset reduction potential and oxidation onset potential were -1.20 and 0.80 eV, corresponding to the LUMO and HOMO energy levels of -3.55 and -5.55 eV, respectively.

Fig. S4 Cyclic voltammograms of **PBIBDF-BT** made by polycondensation. The onset reduction potential and oxidation onset potential were -0.70 and 0.75 eV, corresponding to the LUMO and HOMO energy levels of -4.05 and -5.50 eV, respectively.

Fig. S5 Transfer characteristics of **PIID-DT** (a) and **PBIBDF-DT** (b) prepared by Stille polycondensation.

Fig. S7 ¹H NMR spectra of compound 2 in CDCl₃.

Fig. S8 ¹H NMR spectra of compound 3 in CDCl₃.

Fig. S9 ¹H NMR spectra of compound 4 in CDCl₃.

Fig. S12 ¹H NMR spectra of M3 in CDCl₃.

Fig. S15 The GPC sample results for PIID-DT (entry 2).

Fig. S17 The GPC sample results for PIID-DT (entry 4).

Fig. S19 The GPC sample results for PIID-DT (entry 7).

Fig. S20 The GPC sample results for PBIBDF-DT (entry 8).

Fig. S21 The GPC sample results for PBIBDF-DT (entry 9).