Wholly biomass derivable sustainable polymers by ring-

opening metathesis polymerisation of monomers obtained

from furfuryl alcohol and itaconic anhydride

Supplementary Information

Yinjuan Bai, James H. Clark, Thomas J. Farmer, Ian D. V. Ingram and Michael North

Table of Contents	
Analytical data and spectra for monomers 8b-h	
Cetyl ester 8b	S2
Octyl ester 8c	S4
Isoamyl ester 8d	S6
Butyl ester 8e	S8
<i>tert</i> -Butyl ester 8f	S10
Isopropyl ester 8g	S12
4H-Linalooyl ester 8h	S14
Analytical data and spectra for homopolymers 9b-d,h	
Polymerised cetyl ester 9b	S16
Polymerised octyl ester 9c	S18
Polymerised isoamyl ester 9d	S20
Polymerised 4H-linalooyl ester 9h	S22
Analytical data and spectra for copolymers	
NMR monitoring of the block copolymerisation of monomers 8a and 8b	S24
Plot of carbene integral versus time	S25
Individual spectra from Figure 7	S26
Individual spectra from Figure 8	S29
Block copolymer of monomers 8a and 8b	S32
Random copolymer of monomers 8a and 8b	S34

The original data associated with this research is available at: DOI: 10.15124/f4cf9761-ba74-4de4-9903-16261b5baa7c

Not all ¹³C peaks within the cetyl chain are resolved or have been assigned.

¹H NMR (CDCl₃, 400 MHz) δ_{H} 6.54 (1H, dd, *J* 5.8, 1.7 Hz, H1), 6.48 (1H, d, *J* 5.8 Hz, H2), 5.03 (1H, dd, *J* 4.7, 1.6 Hz, H6), 4.78 (1 H, d, *J* 10.7 Hz, H7), 4.59 (1H, d, *J* 10.7 Hz, H7), 4.05 (2H, td, *J* 6.8, 1.7 Hz, H11), 2.6–2.4 (2H, m, H5+H9), 2.28 (1H, d, *J* 14.6 Hz, H9), 1.7–1.5 (2H, m, H12), 1.47 (1H, d, *J* 12.2 Hz, H5), 1.4–1.1 (26H, m, H13-25), 0.87 (3H, t, *J* 6.8 Hz, H26).

 13 C NMR (CDCl₃, 101 MHz) $\delta_{\rm C}$ 177.2 (C8), 169.7 (C10), 138.1 (C1), 130.8 (C2), 94.2 (C3), 78.8 (C6), 68.9 (C7), 65.7 (C11), 53.6 (C12), 52.2 (C4), 40.3 (C9), 36.8 (C5), 32.1, 29.8, 29.7, 29.6, 29.5, 29.3, 28.5, 26.0, 22.8, 14.3 (C26).

FTIR (neat, ATR) v_{max} 3013, 2952, 2913, 2850, 1768 and 1739 cm⁻¹

HRMS (ESI) m/z: [M+Na]⁺ Calculated for C₂₆H₄₂NaO₅ 457.2924, Found 457.2929

¹H NMR (CDCl₃, 400 MHz) δ_{H} 6.6–6.5 (1H, m, H1), 6.49 (1H, d, *J* 5.8 Hz, H2), 5.04 (1H, dd, *J* 4.7, 1.3 Hz, H6), 4.79 (1H, d, *J* 10.7 Hz, H7), 4.60 (1H, d, *J* 10.7 Hz, H7), 4.06 (2H, td, *J* 6.9, 1.6 Hz, H11), 2.6–2.4 (2H, m, H5+H9), 2.28 (1H, d, *J* 14.6 Hz, H9), 1.7–1.5 (2H, m, H12), 1.48 (1H, d, *J* 12.2 Hz, H5), 1.4-1.2 (10H, m, H13-H17), 0.88 (3H, t, *J* 6.8 Hz, H18).

 13 C NMR (CDCl₃ 101 MHz) δ_{C} 177.1 (C8), 169.6 (C10), 138.0 (C1), 130.7 (C2), 94.1 (C3), 78.7 (C6), 68.7 (C7), 65.5 (C11), 52.0 (C4), 40.1 (C9), 36.7 (C5), 31.8 (C12), 29.2 (C13+C14), 28.4 (C15), 25.8 (C16), 22.6 (C17), 14.1 (C18).

FTIR (neat, ATR) v_{max} 2955, 2926, 2856, 1774 and 1730 cm⁻¹

HRMS (ESI) m/z: [M+Na]⁺ Calculated for C₁₈H₂₆NaO₅ 345.1672, Found 345.1663

¹H NMR (CDCl₃, 400 MHz) δ_{H} 6.55 (1H, dd, *J* 5.8, 1.6 Hz, H1), 6.49 (1H, d, *J* 5.9 Hz, H2), 5.04 (1H, dd, *J* 4.7, 1.5 Hz, H6), 4.79 (1H, d, *J* 10.7 Hz, H7), 4.60 (1H, d, *J* 10.7 Hz, H7), 4.10 (2H, td, *J* 7.0, 1.4 Hz, H11), 2.6–2.4 (2H, m, H5+H9), 2.28 (1H, d, *J* 14.6 Hz, H9), 1.7-1.6 (1H, m, H13), 1.6–1.4 (3H, m, H5+H12), 0.91 (6H, d, *J* 6.7, H14).

¹³C NMR (CDCl₃, 101 MHz) δ_{C} 177.1 (C8), 169.5 (C10), 138.0 (C1), 130.6 (C2), 94.0 (C3), 78.7 (C6), 68.6 (C7), 63.9 (C11), 52.0 (C4), 40.0 (C9), 37.0 (C5), 36.6 (C13), 24.9 (C12), 22.4 (C14), 22.3 (C14).

FTIR (neat, ATR) v_{max} 2958, 2872, 1772 and 1729 cm⁻¹

HRMS (ESI) m/z: [M+Na]⁺ Calculated for C₁₅H₂₀NaO₅ 303.1203, Found 303.1197

¹H NMR (CDCl₃, 400 MHz) δ_{H} 6.55 (1H, dd, *J* 5.8, 1.7 Hz, H1), 6.49 (1 H, d, *J* 5.8 Hz, H2), 5.04 (1H, dd, *J* 4.7, 1.7 Hz, H6), 4.79 (1H, d, *J* 10.8 Hz, H7), 4.60 (1H, d, *J* 10.7 Hz, H7), 4.07 (2H, td, *J* 6.7, 1.9 Hz, H11), 2.6–2.4 (2H, m, H5+H9), 2.28 (1H, d, *J* 14.5 Hz, H9), 1.7–1.5 (2H, m, H12), 1.48 (1H, d, *J* 12.2 Hz, H5), 1.4–1.3 (2 H, m, H13), 0.92 (3H, t, *J* 7.4 Hz, H14).

 ^{13}C NMR (CDCl₃ 101 MHz) δ_{C} 177.1 (C8), 169.6 (C10), 138.0 (C1), 130.6 (C2), 94.0 (C3), 78.6 (C6), 68.6 (C7), 65.1 (C11), 52.0 (C4), 40.0 (C9), 36.6 (C5), 30.4 (C12), 19.0 (C13), 13.6 (C14).

FTIR (neat, ATR) v_{max} 2960, 2785, 1772 and 1728 cm⁻¹

HRMS (ESI) m/z: [M+Na]⁺ Calculated for C₁₄H₁₈NaO₅ 289.1046, Found 289.1048

¹H NMR (CDCl₃, 400 MHz) δ_{H} 6.54 (1H, dd, *J* 5.8, 1.7 Hz, H1), 6.49 (1H, d, *J* 5.8 Hz, H2), 5.03 (1H, dd, *J* 4.7, 1.6 Hz, H6), 4.79 (1H, d, *J* 10.7 Hz, H7), 4.59 (1H, d, *J* 10.7 Hz, H7), 2.53 (1H, dd, *J* 12.2, 4.8 Hz, H5), 2.45 (1H, d, *J* 14.2 Hz, H9), 2.16 (1H, d, *J* 14.2 Hz, H9), 1.57 (2H, d, *J* 2.5 Hz, H5), 1.45 (9H, s, H12).

¹³C NMR (CDCl₃, 101 MHz) δ_C 177.2 (C8), 168.9 (C10), 138.0 (C1), 130.9 (C2), 94.2 (C3), 82.2 (C11), 78.8 (C6), 68.7 (C7), 52.2 (C4), 41.5 (C9), 36.7 (C5), 28.0 (C12).

FTIR (neat, ATR) v_{max} 3070, 2980, 2938, 1774 and 1716 cm⁻¹

HRMS (ESI) m/z: [M+Na]⁺ Calculated for C₁₄H₁₈NaO₅ 289.1046, Found 289.1043

Isopropyl ester 8g

¹H NMR (CDCl₃, 400 MHz) δ_{H} 6.55 (1H, dd, *J* 5.8, 1.6 Hz, H1), 6.49 (1H, d, *J* 5.8 Hz, H2), 5.1-4.8 (2H, m, H11+H6), 4.79 (1H, d, *J* 10.8 Hz, H7), 4.60 (1H, d, *J* 10.7 Hz, H7), 2.6-2.5 (1H, m, H5), 2.49 (1H, d, *J* 14.3 Hz, H9), 2.24 (1H, d, *J* 14.3 Hz, H9), 1.48 (1H, d, *J* 12.1 Hz, H5), 1.24 (3H, d, *J* 6.3 Hz, H12), 1.23 (3H, d, *J* 6.3 Hz, H12).

¹³C NMR (CDCl₃, 101 MHz) δ_{C} 177.1 (C8), 169.0 (C10), 138.0 (C1), 130.6 (C2), 94.0 (C3), 78.7 (C6), 69.0 (C7), 68.6 (C11), 52.0 (C4), 40.2 (C9), 36.6 (C5), 21.7 (C12), 21.6 (C12).

FTIR (neat, ATR) v_{max} 2982, 1772 and 1723 cm⁻¹

HRMS (ESI) m/z: [M+Na]⁺ Calculated for C₁₃H₁₆NaO₅ 275.0890, Found 275.0888

This compound was formed as a 1:1 mixture of two diastereomers.

¹H NMR (CDCl₃, 400 MHz) δ_{H} 6.53 (1H, dd, *J* 5.8, 1.6 Hz, H1), 6.49 (1H, dd, *J* 5.8, 1.9 Hz, H2), 5.02 (1H, dd, *J* 4.7, 1.6 Hz, H6), 4.82 (1H, d, *J* 10.6 Hz, H7), 4.59 (1H, d, *J* 10.6 Hz, H7), 2.6–2.4 (2H, m, H5+H9), 2.17 (1H, dd, *J* 14.6, 2.2 Hz, H9), 1.9–1.6 (4H, m, H12+H18), 1.6–1.4 (1H, m, H5), 1.36 (3H, s, H17), 1.3–1.0 (5H, m, H13+H14+H15), 0.9–0.8 (9H, m, H16+H19).

 13 C NMR (CDCl₃, 101 MHz) $\delta_{\rm C}$ (101 MHz) 177.2 (C8), 168.86 and 168.85 (C10), 137.86 and 137.83 (C1), 130.99 and 130.97 (C2), 94.3 (C3), 87.4 (C11), 78.69 and 78.68 (C6), 68.85 and 68.83 (C7), 52.09 and 52.08 (C4), 41.60 and 41.57 (C9), 39.33 and 39.31 (C14), 37.90 and 37.88 (C12), 36.88 and 36.86 (C5), 30.84 and 30.81 (C18), 27.93 and 27.92 (C15), 23.20 and 23.16 (C17), 22.73, 22.71, 22.69 and 22.68 (C16), 21.45 and 21.43 (C13), 8.15 and 8.12 (C19).

FTIR (neat, ATR) v_{max} 2953, 2870, 1775 and 1721 cm⁻¹

HRMS (ESI) m/z: [M+Na]⁺ Calculated for C₂₀H₃₀NaO₅ 373.1985, Found 373.1985.

Polymerised cetyl ester 9b (100:1 homopolymer)

IR Spectrum

¹H NMR Spectrum

<u>SEC</u>

IR Spectrum

Polymerised isoamyl ester 9d (100:1 homopolymer)

¹H NMR Spectrum

<u>SEC</u>

IR Spectrum

Polymerised linalooyl ester 9h (100:1 homopolymer)

¹H NMR Spectrum

<u>SEC</u>

IR Spectrum

NMR monitoring of the block copolymerisation of monomers 8a and 8b

Additional stacked ¹H NMR plot showing more detail of the alkylidene region during the initial stages of polymerisation of **8a**. The change in alkylidene signal reflecting monomer, dimer, and then oligomer bound to ruthenium, is apparent.

Graph showing total monomer conversion throughout the experiment as a function of time.

Plot of carbene integral versus time

Individual spectra from Figure 7

u (una la la cura da ante ante a

									1 .	
20.0	19.5	19.0	18.5	18.0	17.5 f1 (ppm)	17.0	16.5	16.0	15.5	15.
					i (ppiii)					

t = 534 minutes

t = 1488 minutes

any provident for the second	un de la company de la comp
---	---

				1	· · · ·	· · · · ·	1 1			1
20.0	19.5	19.0	18.5	18.0	17.5 f1 (ppm)	17.0	16.5	16.0	15.5	15.

t = 1691 minutes

15.445	15.430	15.415	15.400	15.385 fi	15.370 L (ppm)	15.355	15.340	15.325	15.310

<u>DSC</u>

Random copolymer of monomers 8a and 8b

Sample: YB124B random cetyl methyl copol Size: 6.7000 mg Method: H-C-H

File: ...\YB124B cetyl-methyl random copol.001 Operator: jwc Run Date: 16-Nov-2016 23:12 Instrument: DSC Q2000 V24.10 Build 122

