Electronic Supplementary Information

Dark Current Reduction Strategies Using Edge-on Aligned Donor Polymers for High Detectivity and Responsivity Solution-processed Organic Photodetectors

Seung Hun Eom,^a So Youn Nam,^a Hee Jin Do,^a Jaemin Lee,^{a,b} Sangho Jeon,^c Tae Joo Shin,^c In Hwan Jung,^{d,*} Sung Cheol Yoon,^{a,b,*} and Changjin Lee^{a,b,*}

^a Division of Advanced Materials, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea. E-mail: yoonsch@krict.re.kr (S.C.Y) & cjlee@krict.re.kr (C.L)

^b Department of Chemical Convergence Materials, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea.

^c UNIST Central Research Facilities & School of Natural Science, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan, 689-798, Republic of Korea

^d Department of Chemistry, Kookmin University, 77 Jeongneung-ro, Seongbuk-gu, Seoul 02707, Republic of Korea. E-mail: ihjung@kookmin.ac.kr (I.H.J)

Synthesis of monomers

Figure S1. ¹H NMR spectra of 4,7-bis(5-bromo-4-(2-ethylhexyl)thiophen-2-yl)-5,6bis(octyloxy)benzo[*c*][1,2,5]thiadiazole (2)

Figure S2. ¹³C NMR spectra of 4,7-bis(5-bromo-4-(2-ethylhexyl)thiophen-2-yl)-5,6bis(octyloxy)benzo[*c*][1,2,5]thiadiazole (2)

Figure S3. ¹H NMR spectra of 5,5'-bis(trimethylstannyl)-2,2'-bithiophene

Figure S4. ¹H NMR spectra of (E)-1,2-bis(5-(trimethylstannyl)thiophen-2-yl)ethene

diyl))bis(trimethylstannane)

Figure S6. ¹H NMR spectrum of PT2OBT

Figure S7. ¹H NMR spectrum of PVT2OBT

Figure S8. ¹H NMR spectrum of PFBT2OBT

Figure S9. (a) Out-of-plane and (b) in-plane line cuts of neat polymers (PT2OBT, PVT2OBT and PFBT2OBT) and blend films (PT2OBT:PC₇₀BM, PVT2OBT:PC₇₀BM and PFBT2OBT:PC₇₀BM)

Steady-state space-charge-limited current (SCLC) mobility

The charge carrier mobilities were calculated using the SCLC model, where the SCLC is described by $J = 9\epsilon_0\epsilon_r\mu V^2/8L^3$, where J is the current density, L is the film thickness of the active layer, μ is the hole mobility, ϵ_r is the relative dielectric constant of the transport medium, ϵ_0 is the permittivity of free space (8.85 × 10⁻¹² F m⁻¹), V is the internal voltage in the device, and $V = V_{appl} - V_r - V_{bi}$, where V_{appl} is the applied voltage to the device, V_r is the voltage drop due to contact resistance and series resistance between the electrodes, and V_{bi} is the built-in voltage due to the relative work function difference of the two electrodes.

Figure S10. *J–V* characteristics of (a) the hole-only devices with the structure of ITO/PEDOT:PSS/Polymer:PC₇₀BM (1:1.5 w/w in ODCB)/MoO₃/Ag and (b) the electron-only devices with that of ITO/ZnO/Polymer:PC₇₀BM (1:1.5 w/w in ODCB)/LiF/Al. The charge mobilities were calculated by fitting the *J–V* curves in the SCLC regime.

Figure S11. (a) *J-V* characteristices of PT2OBT:PC₇₀BM devices at the active layer thickness of ~180 nm. (b) Current density vs light intensity at different reverse bias (0, -0.5, -1, -1.5 and - 2 V).

Figure S12. (a) *J-V* characteristices of PVT2OBT:PC₇₀BM devices at the active layer thickness of ~180 nm. (b) Current density vs light intensity at different reverse bias (0, -0.5, -1, -1.5 and -2 V).

Figure S13. (a) *J-V* characteristices of PFBT2OBT:PC₇₀BM devices at the active layer thickness of ~180 nm. (b) Current density vs light intensity at different reverse bias (0, -0.5, -1, -1.5 and -2 V).

Figure S14. The caculated responsivity of PT2OBT, PVT2OBT and PFBT2OBT from EQE measurement at -2V (line + symbol) and the responsivity from direct measurement under 530 nm LED at -2V (star symbol).