
i1
ol

Electronic Supplementary Information

Dark Current Reduction Strategies Using Edge-on Aligned Donor 

Polymers for High Detectivity and Responsivity Solution-processed 

Organic Photodetectors

Seung Hun Eom,a So Youn Nam,a Hee Jin Do,a Jaemin Lee,a,b Sangho Jeon,c Tae 
Joo Shin,c In Hwan Jung,d,* Sung Cheol Yoon,a,b,* and Changjin Leea,b,*

a Division of Advanced Materials, Korea Research Institute of Chemical Technology 

(KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea. E-mail: 

yoonsch@krict.re.kr (S.C.Y) & cjlee@krict.re.kr (C.L)
b Department of Chemical Convergence Materials, University of Science and Technology 

(UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea.
c UNIST Central Research Facilities & School of Natural Science, Ulsan National Institute 

of Science and Technology (UNIST), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan, 689-

798, Republic of Korea
d Department of Chemistry, Kookmin University, 77 Jeongneung-ro, Seongbuk-gu, Seoul 

02707, Republic of Korea. E-mail: ihjung@kookmin.ac.kr (I.H.J)

Electronic Supplementary Material (ESI) for Polymer Chemistry.
This journal is © The Royal Society of Chemistry 2017



i2
ol

Synthesis of monomers

Figure S1. 1H NMR spectra of 4,7-bis(5-bromo-4-(2-ethylhexyl)thiophen-2-yl)-5,6-

bis(octyloxy)benzo[c][1,2,5]thiadiazole (2)
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Figure S2. 13C NMR spectra of 4,7-bis(5-bromo-4-(2-ethylhexyl)thiophen-2-yl)-5,6-

bis(octyloxy)benzo[c][1,2,5]thiadiazole (2)
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Figure S3. 1H NMR spectra of 5,5'-bis(trimethylstannyl)-2,2'-bithiophene
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Figure S4. 1H NMR spectra of (E)-1,2-bis(5-(trimethylstannyl)thiophen-2-yl)ethene
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Figure S5. 1H NMR spectra of ((2,5-difluoro-1,4-phenylene)bis(thiophene-5,2-

diyl))bis(trimethylstannane)
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Figure S6. 1H NMR spectrum of PT2OBT
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Figure S7. 1H NMR spectrum of PVT2OBT
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Figure S8. 1H NMR spectrum of PFBT2OBT
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Figure S9. (a) Out-of-plane and (b) in-plane line cuts of neat polymers (PT2OBT, PVT2OBT 

and PFBT2OBT) and blend films (PT2OBT:PC70BM, PVT2OBT:PC70BM and PFBT2OBT:PC70BM)
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Steady-state space-charge-limited current (SCLC) mobility

The charge carrier mobilities were calculated using the SCLC model, where the SCLC is 

described by J = 9ε0εrμV2/8L3, where J is the current density, L is the film thickness of the 

active layer, μ is the hole mobility, εr is the relative dielectric constant of the transport 

medium, ε0 is the permittivity of free space (8.85 × 10–12 F m–1), V is the internal voltage in 

the device, and V = Vappl – Vr – Vbi, where Vappl is the applied voltage to the device, Vr is the 

voltage drop due to contact resistance and series resistance between the electrodes, 

and Vbi is the built-in voltage due to the relative work function difference of the two 

electrodes.
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Figure S10. J–V characteristics of (a) the hole-only devices with the structure of 

ITO/PEDOT:PSS/Polymer:PC70BM (1:1.5 w/w in ODCB)/MoO3/Ag and (b) the electron-only 

devices with that of ITO/ZnO/Polymer:PC70BM (1:1.5 w/w in ODCB)/LiF/Al. The charge 

mobilities were calculated by fitting the J–V curves in the SCLC regime.
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Figure S11. (a) J-V characteristices of PT2OBT:PC70BM devices at the active layer thickness of 

~180 nm. (b) Current density vs light intensity at different reverse bias (0, -0.5, -1, -1.5 and -

2 V).
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Figure S12. (a) J-V characteristices of PVT2OBT:PC70BM devices at the active layer thickness 

of ~180 nm. (b) Current density vs light intensity at different reverse bias (0, -0.5, -1, -1.5 

and -2 V).
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Figure S13. (a) J-V characteristices of PFBT2OBT:PC70BM devices at the active layer thickness 

of ~180 nm. (b) Current density vs light intensity at different reverse bias (0, -0.5, -1, -1.5 

and -2 V).
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Figure S14. The caculated responsivity of PT2OBT, PVT2OBT and PFBT2OBT from EQE 

measurement at -2V (line + symbol) and the responsivity from direct measurement under 

530 nm LED at -2V (star symbol). 


