Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Oxidative Polymerization of Catecholamines: Structural Access by High-Resolution Mass Spectrometry

Hendrik Woehlk, a,b Jan Steinkoenig, b,c Christiane Lang, a Anja S. Goldmann, a,b,c Leonie Barner, a,c James P. Blinco, a,b Kathryn E. Fairfull-Smith* a and Christopher Barner-Kowollik* a,b,c

- ^a School of Chemistry, Physics and Mechanical Engineering, Faculty of Science and Engineering, Queensland University of Technology (QUT), 2 George St, Brisbane, QLD 4000, Australia
- ^b Preparative Macromolecular Chemistry, Institut für Technische Chemie und Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstr. 18, 76131 Karlsruhe, Germany
- ^c Institut für Biologische Grenzflächen, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany

*to whom correspondence should be addressed E-mail: k.fairfull-smith@qut.edu.au; christopher.barnerkowollik@qut.edu.au; christopher.barner-kowollik@kit.edu

Materials

Acetonitrile (Carl Roth, LC-MS grade \geq 99.95%, employed for ESI MS), 4-amino-2,2,6,6-tetramethylpiperidine-1-oxyl (4-amino-TEMPO; abcr, 97%), chloroform-d₁ (CDCl₃; Sigma-Aldrich, 99.8% D), cyclohexane (VWR, p.a.), dry dichloromethane (dry DCM; Acros, 99.8% extra dry), diethyl ether (VWR, p.a.), 4-(dimethylamino)pyridine (DMAP; Acros, 99%), dimethyl sulfoxide (DMSO; Roth, 99%), ethyl acetate (VWR, p.a.), 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC·HCl; Carl Roth, >99%), hydrogen chloride solution, 2 M in diethyl ether (Alfa Aesar), hydrogen peroxide solution 30% (w/w in water) (Carl Roth), iron(II) sulfate heptahydrate (VWR, 99%), methanol (MeOH; Carl Roth, HPLC grade, employed for ESI MS), methanol-d₄ (MeOD; Sigma-Aldrich, 99.8% D), silica gel (Merck), sodium bicarbonate (Carl Roth, \geq 99%), sodium chloride (Carl Roth, \geq 99%), sodium sulfate (Carl Roth, \geq 99%), tetrahydrofuran (THF; GPC grade, Scharlau, employed for ESI MS) and tris-(hydroxymethyl)methylamine (Tris; Acros, >99%) were used as received. Type I ultrapure water was obtained from Puranity PU 15 water purification system (VWR, employed for polymerization and ESI MS). Thin layer chromatography (TLC) was performed on aluminium plates coated with silica gel 60 F₂₅₄ (Merck).

Characterization Methods

¹H NMR (400 MHz) and ¹³C NMR (101 MHz) spectroscopy was performed on a Bruker Ascend 400 spectrometer. All samples were recorded in CDCl₃ or MeOD. Chemical shifts are expressed in parts per million (ppm) and coupling constants (J values) are reported in Hz. The δ-scale is referenced to characteristic solvent signals as internal standards.

Electrospray ionization mass spectrometry (ESI MS) was performed using a LTQ Orbitrap XL Q Exactive mass spectrometer (Thermo Fisher Scientific, San Jose, CA, USA) equipped with an HESI II probe. The instrument was calibrated in the range of m/z 74 – 1822 using standard calibration solutions (Thermo Scientific). The FT resolution was set to 140 000, the capillary temperature was set to 320 °C and the S-lens RF level to 68.0. The dimensionless gas flow rates were set to 10 (sheath gas), 0 (sweep gas), 0 (aux gas) employing negative ion mode and 5 (sheath gas), 0 (sweep gas), 1 (aux gas) employing positive ion mode. A collision induced dissociation (CID) energy of 80 eV was employed. The spectra were recorded with a constant spray voltage of 3.4 ± 0.2 kV for ESI-CID MS and 4.3 kV for ESI-CID MS/MS, respectively. The samples were dissolved in water/acetonitrile (1:1, v/v) doped with 0.1% (v/v) acetic acid or in THF/MeOH (3:2, v/v) with a concentration of 0.05 mg·mL⁻¹. All samples were filtered prior to injection. The recorded MS spectra were evaluated using the Xcalibur software.

Experimental Data

74%).

1-Methoxy-2,2,6,6-tetramethylpiperidin-4-amine (2): Compound 2 was prepared by modification of a literature procedure. 4-Amino-2,2,6,6-tetramethylpiperidine (1.71 g, 10.0 mmol, 1.0 eq.) was dissolved in DMSO (20 mL). After the addition of Fe(II)SO₄·7H₂O (6.95 g, 25.0 mmol, 2.5 eq.), the solution was placed in an ice bath and H₂O₂ solution (4.30 mL, 30% w/w, 5.0 eq.) was added dropwise to the vigorously stirring solution. The reaction mixture was stirred overnight and allowed to reach room temperature. The solution was basified using 2M NaOH (50 mL), the precipitate was filtered off and the filtrate was extracted with diethyl ether (3 × 50 mL). The organic phase was washed with deionised water (15 mL) and dried over Na₂SO₄. The solvent was carefully removed under reduced pressure yielding a yellow liquid (1.38 g, 7.4 mmol,

¹H NMR (400 MHz, CDCl₃, 298 K) δ = 3.59 (s, 3H, O-CH₃), 3.04 – 2.93 (m, 1H, H₂N-CH), 1.69 – 1.59 (m, 2H, CH(CH₂)₂), 1.33 – 1.21 (m, 2H, CH(CH₂)₂), 1.18 (s, 6H, C(CH₃)₂), 1.11 (s, 6H, C(CH₃)₂) ppm. ¹³C NMR (101 MHz, CDCl₃, 298 K) δ = 65.5 (O-CH₃), 60.0 (C(CH₃)₂), 50.0 (CH(CH₂)₂), 42.2 (H₂N-CH), 33.2 (C(CH₃)₂), 20.9 (C(CH₃)₂) ppm. HRMS (*m/z*) calculated for C₁₀H₂₃N₂O [M+H]⁺ 187.1805, found 187.1808.

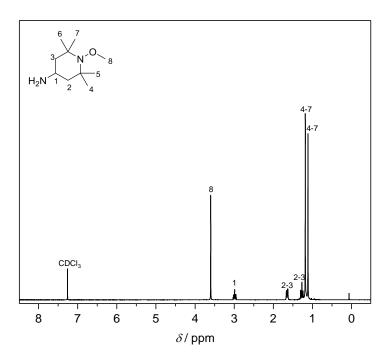
 $(TBDMS)_2$ -N-Boc-DOPA-TEMPO-CH₃ (3): 1-Methoxy-2,2,6,6-tetramethylpiperidin-4-amine (2) (1.12 g, 6.0 mmol, 1.0 eq.) and DMAP (1.47 g, 12.0 mmol, 2.0 eq.) were dissolved in dry DCM (25 mL). 3,4-bis(tert-Butyldimethylsilyloxy)-N-tert-

butyloxycarbonyl-L-phenylalanine (1) (3.15 g, 6.0 mmol, 1 eq.), previously prepared according to a literature procedure,² was added to the solution followed by the addition of EDC·HCl (2.30 g, 12.0 mmol, 2.0 eq.). The reaction mixture was stirred at ambient temperature for 24 h followed by extraction with saturated NaHCO₃ solution (25 mL), water (10 mL) and brine (10 mL). The organic phase was dried over Na₂SO₄ and evaporated under reduced pressure. The crude product was purified by column chromatography employing ethyl acetate and cyclohexane (2:7) as solvent mixture ($R_f = 0.44$) yielding a yellow solid (3.47 g, 5.0 mmol, 83%).

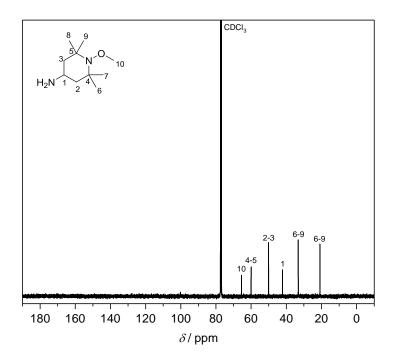
¹H NMR (400 MHz, MeOD, 298 K) δ = 6.77 (d, J = 8.0 Hz, 1H, O-C_{Ar}-C_{Ar}H-C_{Ar}H), 6.73 (d, J = 2.1 Hz, 1H, O-C_{Ar}-C_{Ar}H-C_{Ar}), 6.70 (dd, J = 8.1, 2.1 Hz, 1H, O-C_{Ar}-C_{Ar}H-C_{Ar}H), 4.18 – 4.08 (m, 1H, C_{Ar}-CH₂-CH), 4.06 – 3.94 (m, 1H, NH-CH(CH₂)₂), 3.59 (s, 3H, O-CH₃), 2.90 – 2.67 (m, 2H, C_{Ar}-CH₂), 1.71 – 1.22 (m, 4H,

NH-CH(CH₂)₂), 1.40 (s, 9H, O-C(CH₃)₃), 1.18 (s, 3H, C(CH₃)₂), 1.17(s, 3H, C(CH₃)₂), 1.16 (s, 3H, C(CH₃)₂), 1.15 (s, 3H, C(CH₃)₂), 1.01 (s, 9H, Si-C(CH₃)₃), 0.99 (s, 9H, Si-C(CH₃)₃), 0.21 (s, 6H, Si(CH₃)₂), 0.20 (s, 6H, Si(CH₃)₂) ppm. ¹³C NMR (101 MHz, MeOD, 298 K) δ = 178.3 (CH-CONH), 157.4 (CH-NHCOO), 147.8 (O-C_{Ar}), 146.9 (O-C_{Ar}), 131.7 (C_{Ar}-CH₂), 123.7 (C_{Ar}H), 123.6 (C_{Ar}H), 122.0 (O-C_{Ar}-C_{Ar}H-C_{Ar}H), 80.6 (O-C(CH₃)₃), 65.9 (O-CH₃), 61.0 (C(CH₃)₂), 57.6 (C_{Ar}-CH₂-CH), 46.0 (CH-(CH₂)₂), 45.9 (CH-(CH₂)₂), 42.1 (NH-CH(CH₂)₂), 39.0 (C_{Ar}-CH₂-CH), 33.5 (C(CH₃)₂), 33.4 (C(CH₃)₂), 28.7 (O-C(CH₃)₃), 26.6 (Si-C(CH₃)₃), 26.5 (Si-C(CH₃)₃), 20.9 (C(CH₃)₂), 20.8 (C(CH₃)₂), 19.4 (Si-C(CH₃)₃), -3.7 (Si-(CH₃)₂), -3.7 (Si-(CH₃)₂) ppm. HRMS (*m/z*) calculated for C₃₆H₆₈N₃O₆Si₂ [M+H]⁺ 694.4641, found 694.4648. M.p. 148 °C.

DOPA-TEMPO- CH_3 dihydrochloride (4): All solvents were purged with N_2 for 20 min prior to use. (TBDMS)₂-N-Boc-DOPA-TEMPO- CH_3 (3) (1.20 g, 1.7 mmol, 1.0 eq.) was dissolved in diethyl ether (5 mL). 2M HCl in diethyl ether (8.5 mL, 10.0 eq.) was added dropwise and


the solution was stirred at room temperature overnight. The solvent was evaporated and the residue was washed with diethyl ether (25 mL). The crude product was redissolved in water (10 mL, acidified with a few drops of 1M HCl), filtered and lyophilized yielding a white-orange solid (0.61 g, 1.4 mmol, 82%).

¹H NMR (400 MHz, MeOD, 298 K) δ = 6.76 (d, J = 8.0 Hz, 1H, O-C_{Ar}-C_{Ar}H-C_{Ar}H), 6.67 (d, J = 2.1 Hz, 1H, O-C_{Ar}-C_{Ar}H-C_{Ar}), 6.60 (dd, J = 8.0, 2.1 Hz, 1H, O-C_{Ar}-C_{Ar}H-C_{Ar}H), 4.22 – 4.15 (m, 1H, NH-CH(CH₂)₂), 4.21 (s, 3H, O-CH₃), 3.94 – 3.86 (m, 1H, C_{Ar}-CH₂-CH), 3.04 – 2.87 (m, 2H, C_{Ar}-CH₂-CH), 2.10 – 1.65 (m, 4H, NH-CH(CH₂)₂), 1.62 (s, 3H, C(CH₃)₂), 1.61 (s, 3H, C(CH₃)₂), 1.51 (s, 3H, C(CH₃)₂), 1.50 (s, 3H, C(CH₃)₂) ppm. ¹³C NMR (101 MHz, MeOD, 298 K) δ = 169.2 (CONH), 146.7 (O-C_{Ar}), 146.1 (O-C_{Ar}), 126.8 (C_{Ar}-CH₂), 121.9 (O-C_{Ar}-C_{Ar}H-C_{Ar}H), 117.7 (O-C_{Ar}-C_{Ar}H-C_{Ar}), 116.8 (O-C_{Ar}-C_{Ar}H-C_{Ar}H), 71.7 (C(CH₃)₂), 71.6 (C(CH₃)₂), 68.5 (O-CH₃), 56.0 (C_{Ar}-CH₂-CH), 42.7 (NH-CH(CH₂)₂), 42.6 (NH-CH(CH₂)₂), 40.5 (NH-CH(CH₂)₂), 38.2 (C_{Ar}-CH₂-CH), 28.5 (C(CH₃)₂), 28.4 (C(CH₃)₂), 21.0 (C(CH₃)₂), 21.0 (C(CH₃)₂) ppm. HRMS (m/z) calculated for C₁₉H₃₂N₃O₄ [M-HCl-Cl]⁺ 366.2387, found 366.2389. M.p. 138 °C (dec.).


*Poly(DOPA-TEMPO-CH*₃) (**5**): Compound **4** (548 mg, 1.25 mmol) was dissolved in 10 mM Tris buffer (151 mg, 1.25 mmol in 125 mL H_2O) previously adjusted to pH 8.5 using 1M HCl. The solution of **4** was vigorously stirred in an open glass vial. The pH value was carefully readjusted and maintained within the first 30 min of polymerization at pH 8.25 \pm 0.05 using Tris. After 72 h the precipitate was isolated by centrifugation and decantation. The solid was washed with

water (3 \times 30 mL) followed by centrifugation and decantation. The product was lyophilized yielding a yellow-brown solid (80 mg).

NMR spectra

Fig. S1 ¹H NMR spectrum (400 MHz, CDCl₃, 298 K) of 1-methoxy-2,2,6,6-tetramethylpiperidin-4-amine (2).

Fig. S2 13 C NMR spectrum (101 MHz, CDCl₃, 298 K) of 1-methoxy-2,2,6,6-tetramethylpiperidin-4-amine (2).

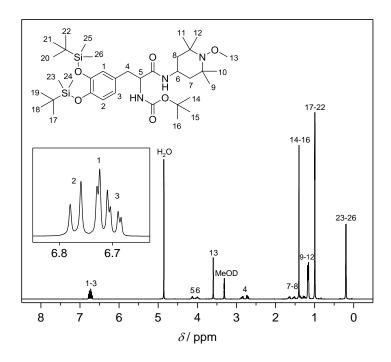


Fig. S3 ¹H NMR spectrum (400 MHz, MeOD, 298 K) of (TBDMS)₂-N-Boc-DOPA-TEMPO-CH₃ (3).

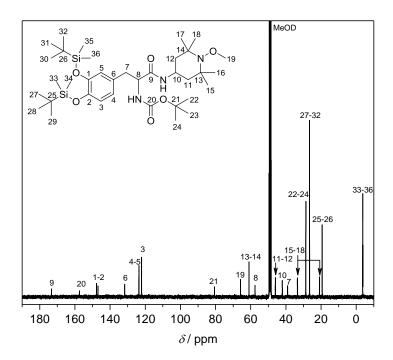


Fig. S4 ¹³C NMR spectrum (101 MHz, MeOD, 298 K) of (TBDMS)₂-N-Boc-DOPA-TEMPO-CH₃ (3).

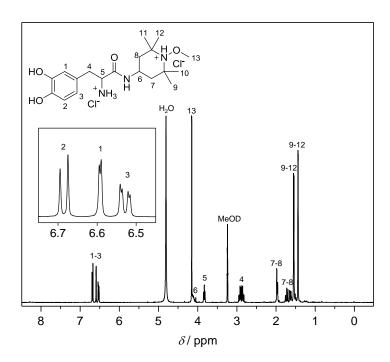


Fig. S5 ¹H NMR spectrum (400 MHz, MeOD, 298 K) of DOPA-TEMPO-CH₃ dihydrochloride (4).

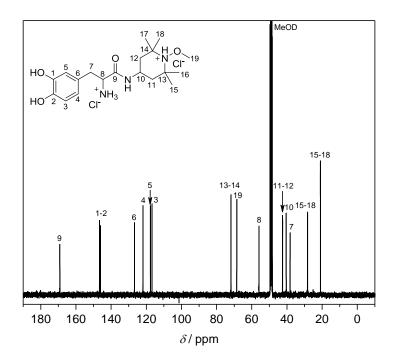
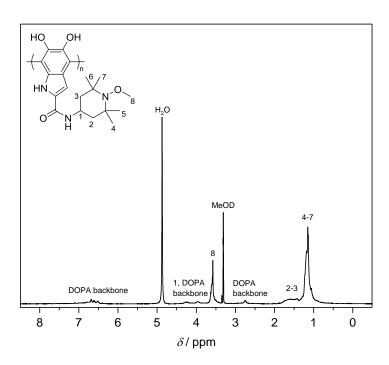
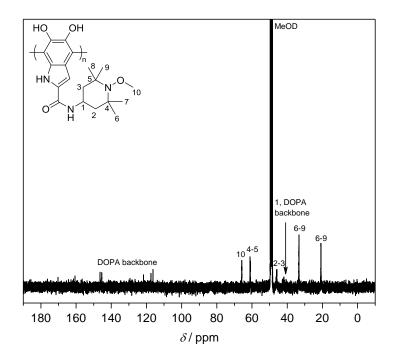




Fig. S6. ¹³C NMR spectrum (101 MHz, MeOD, 298 K) of DOPA-TEMPO-CH₃ dihydrochloride (4).

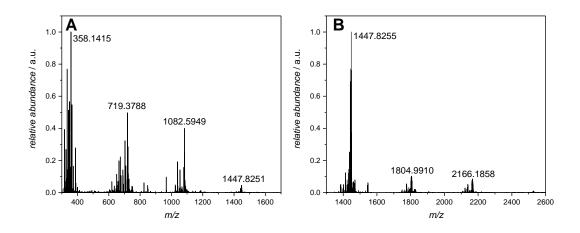


Fig. S7 ¹H NMR spectrum (400 MHz, MeOD, 298 K) of poly(DOPA-TEMPO-CH₃) (**5**) depicted as an ideal structure.

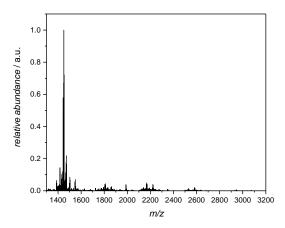
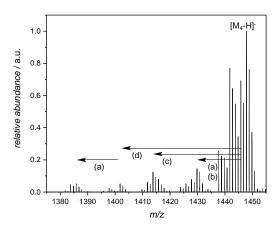


Fig. S8 13 C NMR spectrum (101 MHz, MeOD, 298 K) of poly(DOPA-TEMPO-CH₃) (**5**) depicted as an ideal structure.


MS spectra and peak assignments

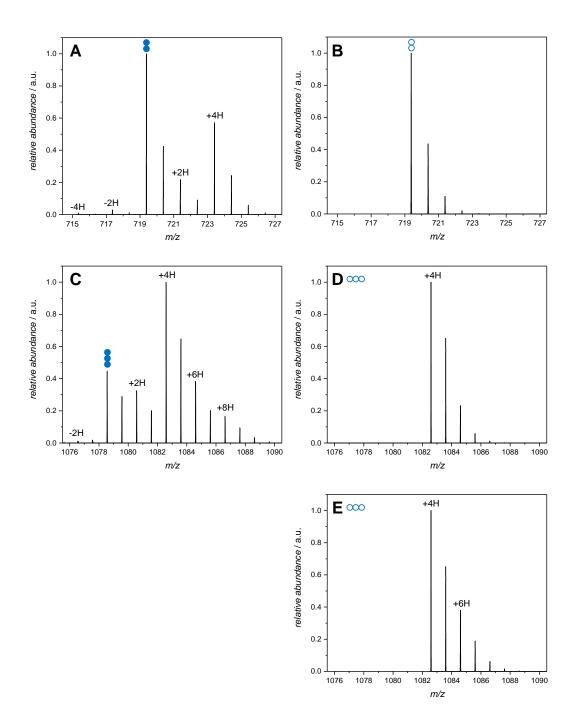

Fig. S9 ESI(-)-CID MS overview spectra of poly(DOPA-TEMPO-CH₃) (**5**) in H₂O/acetonitrile 1:1 (v/v) doped with 0.1% (v/v) acetic acid depicted from (**A**) m/z 300 – 1700 and (**B**) m/z 1300 – 2600. The most abundant peaks of each isotopic pattern are labelled with m/z(exp) (refer to Table S1 for structural assignments).

Fig. S10 ESI(+)-CID MS overview spectra of poly(DOPA-TEMPO-CH₃) (5) in H₂O/acetonitrile 1:1 (v/v) doped with 0.1% (v/v) acetic acid depicted from m/z 1300 – 3200.

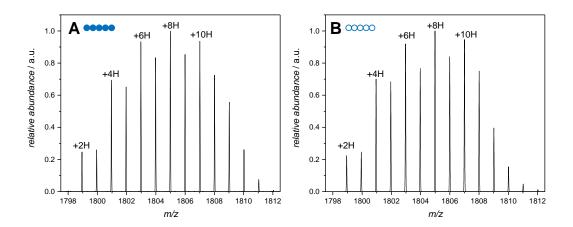
Fig. S11 Selected ESI(-)-CID MS spectrum of poly(DOPA-TEMPO-CH₃) (**5**) in H₂O/acetonitrile 1:1 (v/v) doped with 0.1% (v/v) acetic acid depicted from m/z 1370 – 1455 exemplarily showing typical single-charged oligomer profile of tetrameric species. The characteristic fragmentation pattern (black arrows) suggests liberation of -OH groups (a), -CH₃ groups (b), -OCH₃ groups (c), as well as C₂H₂O-fragments (d) as a portion of the phenyl ring.³ For [M₄-H]⁻ zoomed spectrum with simulated isotopic patterns and peak assignments refer to Fig. 3 and Table S1.

Fig. S12 Comparison of experimentally obtained spectrum of dimer region $[M_2-H]^-$ (**A**) (negative ion mode, refer to Fig. 1) and simulated isotopic pattern of most abundant peak (DHI homodimer) (**B**) indicating the presence of higher molecular weight species such as +2H and +4H dimers. The same comparison was performed for the trimer region $[M_3-H]^-$ with the experimentally obtained spectrum (**C**) (negative ion mode, refer to Fig. 1) and the simulated isotopic patterns of the most abundant species (+4H) (**D**) and additionally +6H (**E**) clearly indicating the presence of +8H dimer which correspond to incorporated open-chain dopamine units (refer to Fig S13). Blue filled circles (experimentally obtained spectra) and blue unfilled circles (simulated spectra) represent the molecular ion peak of the homodimer with DHI as the polymer backbone repeating unit. For peak assignments refer to Table S1.

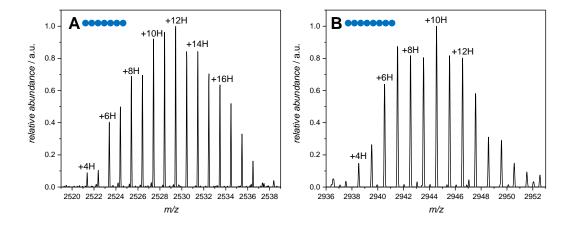
Fig. S13 Proposed structures of +8H trimeric isomers with m/z(theo) 1086.6192 (m/z(exp) 1086.6257, refer to Fig. 3 and Table S1) with different numbers of incorporated open-chain units.

OСН₃

+4H


осн₃

+2H


OСН₃

+2H

open-chain units: 3

Fig. S14 Comparison of the ESI(-)-CID MS spectrum of poly(DOPA-TEMPO-CH₃) (**5**) in H₂O/acetonitrile 1:1 (v/v) doped with 0.1% (v/v) acetic acid of [M₅-H]⁻ species (**A**) depicted from m/z 1798 – 1812 and (**B**) corresponding simulated isotopic patterns. For peak assignments refer to Table S1.

Fig. S15 ESI(+)-CID MS spectrum of poly(DOPA-TEMPO-CH₃) (**5**) in H₂O/acetonitrile 1:1 (v/v) doped with 0.1% (v/v) acetic acid. (**A**) Heptamer profile [M₇+H]⁺ depicted from m/z 2519 – 2539 and (**B**) octamer profile [M₈+H+NaCl]⁺ depicted from m/z 2936 – 2953. [M₈+H]⁺ species (only detected as a minor single-charged profile) are not displayed. For peak assignments refer to Table S3.

Table S1 ESI(-)-CID MS peak assignments of $[M_n-H]^-$ oligomers with n=2-6 of poly(DOPA-TEMPO-CH₃) (5). Isotopic pattern simulations were conducted using the Xcalibur software. The m/z(theo) values were obtained from simulated spectra.

		[M ₂ -F	H]-, DIMER •••	±2xH					
	1	(refe	r to Fig. 1 and Fig.	S12)		T	T		
label	formula of M ₂	m/z(exp)	m/z(theo)	Δm/z	Δ <i>m/z</i> [ppm]	resolution	relative ratio		
-4H	C ₃₈ H ₄₈ N ₆ O ₈	715.3471	715.3450	0.0021	2.94	77000	0.01		
-2H	$C_{38}H_{50}N_6O_8$	717.3631	717.3603	0.0028	3.90	76000	0.03		
••	$C_{38}H_{52}N_6O_8$	719.3788	719.3763	0.0025	3.48	77000	1.00		
+2H	$C_{38}H_{54}N_6O_8$	721.3959	721.3885	0.0074	10.26	73300	0.21		
+4H	$C_{38}H_{56}N_6O_8$	723.4102	723.4071	0.0031	4.29	77600	0.57		
		[M ₃ -H]	TRIMER	±2xH					
			r to Fig. 1 and Fig.						
label	formula of M₃	m/z(exp)	<i>m/z</i> (theo)	Δm/z	Δ <i>m/z</i> [ppm]	resolution	relative ratio		
-2H	C ₅₇ H ₇₅ N ₉ O ₁₂	1076.5486	1076.5451	0.0034	3.16	62100	0.02		
000	C ₅₇ H ₇₇ N ₉ O ₁₂	1078.5637	1078.5607	0.0030	2.78	63500	0.46		
+2H	C ₅₇ H ₇₉ N ₉ O ₁₂	1080.5788	1080.5738	0.0050	4.63	60300	0.29		
+4H	$C_{57}H_{81}N_9O_{12}$	1082.5949	1082.5914	0.0035	3.23	62200	1.00		
+6H	C ₅₇ H ₈₃ N ₉ O ₁₂	1084.6078	1084.6032	0.0046	4.24	57700	0.29		
+8H	C ₅₇ H ₈₅ N ₉ O ₁₂	1086.6257	1086.6192	0.0065	5.98	60400	0.14		
	[M₄-H]⁻, TETRAMER ●●●● ±2xH								
		[IVI4-H], I	(refer to Fig. 3)	ΞZXΠ					
				. ,	Δm/z		relative		
label	formula of M ₄	<i>m/z</i> (exp)	<i>m/z</i> (theo)	∆m/z	[ppm]	resolution	ratio		
0000	C ₇₆ H ₁₀₂ N ₁₂ O ₁₆	1437.7479	1437.7453	0.0026	1.81	55900	0.31		
+2H	C ₇₆ H ₁₀₄ N ₁₂ O ₁₆	1439.7605	1439.7563	0.0042	2.92	54700	0.14		
+4H	C ₇₆ H ₁₀₆ N ₁₂ O ₁₆	1441.7791	1441.7758	0.0034	2.36	56100	0.89		
+6H	C ₇₆ H ₁₀₈ N ₁₂ O ₁₆	1443.7913	1443.7874	0.0039	2.70	54100	0.38		
+8H	$C_{76}H_{110}N_{12}O_{16}$	1445.8102	1445.8055	0.0047	3.25	56000	0.72		
+10H	C ₇₆ H ₁₁₂ N ₁₂ O ₁₆	1447.8255	1447.8211	0.0044	3.04	55100	1.00		
		,	NTAMER ••••		1				
	1		(refer to Fig. S14)		A /-		unlativa		
label	formula of M₅	m/z(exp)	<i>m/z</i> (theo)	Δm/z	Δ <i>m/z</i> [ppm]	resolution	relative ratio		
+2H	$C_{95}H_{129}N_{15}O_{20}$	1798.9469	1798.9455	0.0014	0.78	54600	0.35		
+4H	C ₉₅ H ₁₃₁ N ₁₅ O ₂₀	1800.9596	1800.9592	0.0004	0.22	50300	0.90		
+6H	$C_{95}H_{133}N_{15}O_{20}$	1802.9748	1802.9727	0.0021	1.16	47300	0.90		
+8H	$C_{95}H_{135}N_{15}O_{20}$	1804.9910	1804.9881	0.0029	1.61	47300	1.00		
+10H	C ₉₅ H ₁₃₇ N ₁₅ O ₂₀	1807.0075	1807.0031	0.0044	2.43	48800	0.85		

Table S1 continued.

		[M ₆ -H] ⁻ , HI	EXAMER ••••	±2xH			
			(refer to Fig. 4)		∆m/z		relative
label	formula of M ₆	<i>m/z</i> (exp)	<i>m/z</i> (theo)	∆m/z	[ppm]	resolution	ratio
+2H	C ₁₁₄ H ₁₅₄ N ₁₈ O ₂₄	2158.1271	2158.1300	0.0028	1.30	44600	0.08
+4H	C ₁₁₄ H ₁₅₆ N ₁₈ O ₂₄	2160.1414	2160.1434	0.0020	0.93	46400	0.25
+6H	C ₁₁₄ H ₁₅₈ N ₁₈ O ₂₄	2162.1562	2162.1591	0.0029	1.34	46500	0.88
+8H	C ₁₁₄ H ₁₆₀ N ₁₈ O ₂₄	2164.1701	2164.1716	0.0015	0.69	45100	0.76
+10H	$C_{114}H_{162}N_{18}O_{24}$	2166.1858	2166.1873	0.0015	0.69	43000	1.00
+12H	C ₁₁₄ H ₁₆₄ N ₁₈ O ₂₄	2168.1994	2168.2012	0.0018	0.83	45000	0.60
+14H	$C_{114}H_{166}N_{18}O_{24}$	2170.2128	2170.2156	0.0029	1.34	47200	0.35

Table S2 ESI(-)-CID MS/MS peak assignments of fragments $[F_x-H]^-$ with x = 3 - 5 of poly(DOPA-TEMPO-CH₃) (5) performed on hexameric species $[M_6-H]^-$ with m/z 2166±5 (refer to Fig. 3). Only most abundant peaks of oligomeric fragments were selected. The m/z (theo) values of most abundant peaks were calculated without simulation of the overlapping isotopic patterns of the remaining species.

	[F		ER FRAGMENT (refer to Fig. 4E)	rs 	+6H			
label	formula of F ₅	m/z(exp)	<i>m/z</i> (theo)	Δm/z	Δ <i>m/z</i> [ppm]	resolution	relative ratio	
+6H	C ₉₅ H ₁₃₁ N ₁₅ O ₂₀	1800.9606	1800.9611	0.0005	0.28	49000	1.00	
	[F ₄ -H] ⁻ ,TETRAMER FRAGMENTS +6H (refer to Fig. 4D)							
label	formula of F ₄	m/z(exp)	<i>m/z</i> (theo)	Δm/z	Δ <i>m/z</i> [ppm]	resolution	relative ratio	
+6H	$C_{76}H_{106}N_{12}O_{16}$	1441.7780	1441.7766	0.0014	0.97	56100	1.00	
	[F₃-H]-,TRIMER FRAGMENTS -◆◆◆ +6H (refer to Fig. 4C)							
label	formula of F ₃	m/z(exp)	<i>m/z</i> (theo)	Δm/z	Δ <i>m/z</i> [ppm]	resolution	relative ratio	
+6H	C ₅₇ H ₈₁ N ₉ O ₁₂	1082.5941	1082.5921	0.0020	1.85	65100	1.00	

Table S3 ESI(+)-CID MS peak assignments of $[M_7+H]^+$ species and $[M_8+H+NaCI]^+$ species of poly(DOPA-TEMPO-CH₃) (5). Isotopic pattern simulations were conducted using the Xcalibur software. The m/z(theo) values were obtained from simulated spectra.

		[M ₇ +H] ⁺ .HF	PTAMER ••••	1000 +25	κH		
			(refer to Fig. S15)				
label	formula of M ₇	m/z(exp)	m/z(theo)	Δm/z	Δ <i>m/z</i> [ppm]	resolution	relativ ratio
+4H	C ₁₃₃ H ₁₈₁ N ₂₁ O ₂₈	2521.3790	2521.3458	0.0332	13.17	42500	0.20
+6H	$C_{133}H_{183}N_{21}O_{28}$	2523.3941	2523.3586	0.0355	14.07	36300	0.60
+8H	$C_{133}H_{185}N_{21}O_{28}$	2525.4050	2525.3715	0.0334	13.23	38500	0.70
+10H	$C_{133}H_{187}N_{21}O_{28}$	2527.4202	2527.3869	0.0333	13.18	37800	1.00
+12H	$C_{133}H_{189}N_{21}O_{28}$	2529.4338	2529.4007	0.0330	13.05	38100	0.70
+14H	$C_{133}H_{191}N_{21}O_{28}$	2531.4493	2531.4152	0.0341	13.47	39200	0.50
+16H	$C_{133}H_{193}N_{21}O_{28}$	2533.4655	2533.4309	0.0345	13.62	38600	0.40
	_						
$[M_8+H+NaCl]^+$, OCTAMER ••••• ±2xH							
			(refer to Fig. S15)		Δm/z		relativ
label	formula of M ₈	<i>m/z</i> (exp)	<i>m/z</i> (theo)	∆m/z	[ppm]	resolution	ratio
+4H	C ₁₅₂ H ₂₀₆ N ₂₄ O ₃₂	2938.5251	2938.4889	0.0362	12.32	38500	0.40
+6H	$C_{152}H_{208}N_{24}O_{32}$	2940.5264	2940.4997	0.0266	9.05	35300	1.00
+8H	$C_{152}H_{210}N_{24}O_{32}$	2942.5366	2942.5096	0.0270	9.18	34800	0.60
+10H	C ₁₅₂ H ₂₁₂ N ₂₄ O ₃₂	2944.5502	2944.5227	0.0275	9.34	34500	0.80
+12H	C ₁₅₂ H ₂₁₄ N ₂₄ O ₃₂	2946.5641	2946.5371	0.0270	9.16	34600	0.40

References

¹ Chalmers, B. A.; Morris, J. C.; Fairfull-Smith, K. E.; Grainger, R. S.; Bottle, S. E. *Chem. Commun.* **2013**, *49*, 10382-10384.

² Lee, B. P.; Huang, K.; Nunalee, F. N.; Shull, K. R.; Messersmith, P. B. *J. Biomater. Sci., Polym. Ed.* **2004**, *15* (4), 449-464.

³ Lee, H.; Dellatore, S. M.; Miller, W. M.; Messersmith, P. B. science 2007, 318, 426.