Supporting Information

Stereospecific Reductive Coupling Polymerization of Bis(benzylic *gem*-dibromide) via Formation of *trans* C-C Double Bond

Hua Cao, Zhe Liu and Qi Wang*

MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou, 310027, P. R. China.

1. Experimental section

1.1 Materials

Tetrahydrofuran (THF) was distilled from sodium. Copper powder (0.50-1.5 μ m, Alfa, 99.9%) was treated with hydrochloric acid and washed successively with water and acetone. N,N,N',N'',Pentamethyldiethylenetriamine (PMDETA, Alfa, 98%), tris(2-dimethylaminoethyl)amine (Me₆TREN, Alfa, 98%), *p*-xylene (Sinopharm Chemical Reagent, SCR), N-bromosuccinimide (NBS, SCR, 98%), benzoyl peroxide (BPO, SCR, 97%), 2,2-di(p-tolyl)-hexafluoropropane (J&K Chemistry, 95%), 5-(tert-butyl)-m-xylene (J&K Chemistry, 97%), hydroquinone (J&K Chemistry, 97%), 2,3-dimethyl-2-butene (Alfa, 98%), 1-bromooctane (Alfa, 98%), *meso*-1,2-dibromo-1,2-diphenylethane (Alfa, 99%) and 33% HBr/AcOH(w/w) solution (Alfa) were used as received. Tris[(2-pyridyl)methyl]amine (TPMA) was synthesized according to previously reported procedures.¹

1.2 Characterization

Number- and weight- average molecular weights and molecular weight distributions were determined by gel permeation chromatograph (GPC) on a Waters 1515 equipped with two PLgel 5 µm MIXED-C columns using polystyrene standards and THF as the eluent at a flow rate of 1.0 mL/min at 40°C. NMR spectra were collected with a Bruker 400 MHz NMR using CDCl₃ or CD₂Cl₂ as a solvent. Elemental analyses were performed on a Flash EA1112 (Thermo Finnigan). MALDI-TOF-MS spectra were performed on a Bruker Ultraflextreme MALDI-TOF instrument operating in linear mode and dithranol (DIT) was used as the matrix. Infrared spectra were recorded on a Bruker VECTOR 220 spectrometer using KBr pressed disks. UV-visible specta were performed on a GCT Premier GC-TOFMA.

1.3 Synthesis of monomers

1.3.1 2,2-Bis(4-dibromomethyl phenyl)hexafluoropropane (1a)

$$- \underbrace{\bigcirc}_{CF_{3}} \underbrace{\overset{CF_{3}}{\longleftarrow}}_{CCI_{4}} \underbrace{\xrightarrow}_{Br} \underbrace{\overset{Br}{\longleftarrow}}_{Br} \underbrace{\bigcirc}_{CF_{3}} \underbrace{\overset{CF_{3}}{\longleftarrow}}_{Br} \underbrace{\overset{Br}{\longleftarrow}}_{Br}$$

1.661 g 2,2-di(p-tolyl)-hexafluoropropane (10 mmol), 7.832 g N-bromosuccinimide (NBS, 44 mmol), 0.532 g benzoyl peroxide (BPO, 2.2 mmol) and 50 mL CCl₄ were placed in 100 mL three-neck round-bottom flask equipped with a reflux condenser. The solution was bubbled with N₂ for 10 minutes then refluxed for 4 hours. The suspension was filtered and obtained solution was concentrated resulting crude product. The crude product was purified by flash chromatography on silica-gel (300 - 400 mesh) (eluted with petroleum ether) to give compound **1a** (11% yield) as white powder. ¹H NMR (400 MHz, CDCl₃, ppm): δ = 7.64 (m, 4H, Ar*H*), 7.39 (d, 4H, Ar*H*), 6.65 (s, 2H, ArC*H*Br₂). ¹³C NMR (101 MHz, CDCl₃, ppm): δ = 142.69, 134.46, 130.51, 126.54, 39.42. GC-MS (EI, m/z): 567 [M-Br]⁺, 488 [M-2Br]⁺, 419 [M-2Br-CF₃]⁺.

1.3.2 1,4-bis(dibromomethyl)benzene (1b)

$$\overset{O}{\longrightarrow} \overset{BBr_3}{\longrightarrow} \overset{Br}{\longrightarrow} \overset{Br}{\overset$$

To a stirring solution of 1,4-phthalaldehyde (1.7 mL, 15 mmol) in 30 mL of dichloromethane (CH₂Cl₂), boron tribromide (30 mL of 1.2M CH₂Cl₂ solution, 36 mmol) was added dropwise over 30 min at cold water bath conditions. After that, the reaction was stirred at room temperature for 1h and then concentrated under vacuum. The crude product was purified by flash chromatography on silica-gel (300 - 400 mesh) (eluted with petroleum ether) to give compound **1b** (80% yield) as white crystal. ¹H NMR (400 MHz, CDCl₃, ppm): δ = 7.58 (s, 4H, Ar*H*), 6.63 (s, 2H, ArC*H*Br₂).

1.3.3 1,4-bis(octyloxy)-2,5-bis(dibromomethyl)benzene (1d)

To a stirring solution of 3.480 g hydroquinone (31.6 mmol) in 180 mL N,N-dimethylformamide (DMF), 10.205 g NaOH (252.8 mmol) was added. The mixture was stirred for 2 h at 15 °C and 16 mL 1-bromooctane (91.6 mmol) was added dropwise. The mixture was stirred for 24 h at 60 °C and then poured into deionized water. The precipitate was extracted with ether, and subsequently the combined organic layer was washed with brine and dried over anhydrous magnesium sulfate. The filtrate was then evaporated at reduced pressure. The crude product was purified by flash chromatography on silica-gel (300 - 400 mesh) (eluted with the solution of 5% ethyl acetate in petroleum ether) to give 1,4-bis(octyloxy)benzene (BOB, 77% yield) as white powder. ¹H NMR (400 MHz, CDCl₃, ppm): $\delta = 6.82$ (s, 4H, Ar*H*), 3.89 (t, 4H, OC*H*₂), 1.73 (m, 4H, OCH₂C*H*₂), 1.28-1.56 (m, 20H, OC₂H₄C₅*H*₁₀CH₃), 0.90 (s, 6H, OC₇H₁₄C*H*₃).

To a solution of 1.201 g paraformaldehyde (40 mmol), 1.670 g BOB (5 mmol) in a 50 mL Schlenk vessel, 20 mL 33% HBr/AcOH(w/w) solution was added. The mixture was stirred for 3 h in 65 °C and cooled down to room temperature. The reaction was poured into 60 mL deionized water and filtrated, the filtrate was then dissolved in 60 mL hot chloroform. The solution was poured into 50 mL methanol, and the resulted precipitate was separated by filtration and dried to give 1,4-bis(octyloxy)-2,5-bis(bromomethyl)benzene (BOBMB, 58% yield) as white powder. ¹H NMR (400 MHz, CDCl₃, ppm): $\delta = 6.85$ (s, 2H, Ar*H*), 4.53 (s, 4H, ArC*H*₂Br), 3.98 (t, 4H, OC*H*₂), 1.81 (m, 4H, OCH₂C*H*₂), 1.38 (d, 20H, OC₂H₄C₅*H*₁₀CH₃), 0.89 (s, 6H, OC₇H₁₄C*H*₃).

1c was prepared from BOBMB by the procedure for **1a**, correspondingly the ratio of BOBMB to NBS was changed to 1:2.2. The crude product was purified by recrystallization from n-hexane to give compound **1c** (55% yield) as white powder. ¹H NMR (400 MHz, CDCl₃, ppm): δ = 7.29 (s, 2H, Ar*H*), 7.09 (s, 2H, Ar*CH*Br₂), 4.07 (t, 4H, OC*H*₂), 1.84 (m, 4H, OCH₂C*H*₂), 1.54 (m, 4H, OCH₂CH₂C*H*₂), 1.31 (m, 16H, OC₃H₆C₄*H*₈CH₃), 0.90 (m, 6H, OC₇H₁₄C*H*₃). ¹³C NMR (101 MHz, CDCl₃, ppm): δ = 147.14, 132.23, 113.60, 69.36, 34.87, 31.82, 29.32, 29.25, 29.16, 26.08, 22.69, 14.14. GC-MS (EI, m/z): 182.95 [M-3Br-2OC₈H₁₇]⁺, 104.05 [M-4Br-2OC₈H₁₇]⁺. Elemental analysis: Calcd. For C₂₄H₃₈Br₄O₂ C%: 42.51, H%: 5.65. Found C%: 42.41, H%:5.65.

1.3.4 5-(tert-butyl)-1,3-bis(dibromomethyl)benzene (1e)

1d was prepared from 5-(tert-butyl)-*m*-xylene by the procedure for **1a**. The crude product was purified by flash chromatography on silica-gel (300 - 400 mesh) (eluted with petroleum ether) to give compound **1d** (22% yield) as white crystal. ¹H NMR (400 MHz, CDCl₃, ppm): δ = 7.60 (t, 1H, Ar*H*), 7.52 (d, 2H, Ar*H*), 6.64 (s, 2H, ArC*H*Br₂), 1.36 (s, 9H, ArC(C*H*₃)₃). ¹³C NMR (101 MHz, CDCl₃, ppm): δ = 152.64, 142.02, 125.05, 122.07, 40.35, 35.14, 31.13. GC-MS (EI, m/z): 397 [M-Br]⁺, 318 [M-2Br]⁺. Elemental analysis: Calcd. For C₁₂H₁₄Br₄ C%: 30.16, H%: 2.95. Found C%: 29.99, H%: 2.91.

1.4 Procedure for the Polymerization

In a typical procedure, for example, 64.8 mg **1a** (0.10 mmol), 58.0 mg TPMA (0.20 mmol) and 14.1 mg Cu (0.22 mol) were added to ampule equipped with a stir bar. The ampule was degassed, backfilled four times with N₂, and then left under N₂. Deoxygenated 4 mL of THF was then added. The ampule was heated at 40 °C for 1.5 h. The ampule was immersed in liquid nitrogen and the mixture was diluted with CH_2Cl_2 , after filtration the resulted solution was precipitated in methanol. The precipitate was isolated and washed by methanol for 4 times, then dried under vacuum at 40 °C to yield polymer. The yield of polymerization was calculated.

1.5 Reactions of the model compound

1.5.1 Preparation of 4-methyl benzal bromide (MBB, 3)

3 was prepared from *p*-tolualdehyde by the procedure for **1b**, correspondingly the ratio of *p*-tolualdehyde to boron tribromide was changed to 1 1.2. The crude product was purified by flash chromatography to give compound **3** (74% yield) **as** white crystal. ¹H NMR (400 MHz, CDCl₃, ppm): $\delta = 7.49$ (m, 2H, Ar*H*), 7.17(d, 2H, Ar*H*), 6.63(s, 1H, ArC*H*Br₂), 2.37(s, 3H, ArC*H*₃). ¹³C NMR(101MHz, CDCl₃, ppm): $\delta = 140.10$, 139.26, 129.27, 126.40, 41.13, 21.29. GC-MS (EI, m/z): 183 [M-Br]⁺, 104 [M-2Br]⁺. Elemental analysis: Calcd. For C₈H₈Br₂ C%: 36.40, H%: 3.06. Found C%: 36.42, H%: 3.14.

1.5.2 Control coupling reactions

In a general procedure, for example, 26.4 mg of **3** (0.10 mmol), 29.0 mg of TPMA (0.10 mmol) and 7.1 mg of copper powder (0.11 mmol) were added to an ampule equipped with a stir bar. The ampule was degassed, backfilled four times with N₂, and then left under N₂. Deoxygenated 2 mL of THF was then added. The ampule was heated at 40°C for 10 min. The ampule was immersed in liquid nitrogen and the mixture was diluted with THF and purified by passing through a neutral alumina column. The crude product containing trace of solvent was obtained after removal of solvent under vacuum, which was measured by ¹H-NMR using DMSO as internal standard, giving yield of the corresponding compounds. ¹H NMR of **6** (400 MHz, CDCl₃): δ = 7.39 (m, 4H, Ar**H**), 7.17 (d, 4H, Ar**H**), 7.04 (s, 1H, ArC**H**), 2.35 (s, 6H, ArC**H**₃).

The crude product in the coupling reaction condition [Cu]/[3] = 0.5:1(Run 2 in Table 3) was further measured by GC-MS and ¹H NMR, demonstrated the complex mixture to be four

components: (a) for 4-methyl benzal bromide, m/z(EI): 183 [M-Br]⁺, 104 [M-2Br]⁺, ¹H NMR (400 MHz, CDCl₃): δ = 7.49 (m, 2H, Ar*H*), 7.17(d, 2H, Ar*H*), 6.63(s, 1H, ArC*H*Br₂), 2.37(s, 3H, ArC*H*₃).; (b) for p-methyl benzaldehyde: m/z(EI): 120 [M]⁺, 91 [M-CHO]⁺, ¹H NMR (400 MHz, CDCl₃): δ = 7.77 (m, 2H, Ar*H*), 7.32 (d, 2H, Ar*H*), 9.97 (s, 1H, ArC*H*O), 2.44 (s, 3H, ArC*H*₃); (c) for *E*-4,4'-dimethylstilbene: m/z(EI): 208 [M]⁺, 178 [M-2CH₃]⁺, ¹H NMR (400 MHz, CDCl₃): δ = 7.39 (m, 4H, Ar*H*), 7.17 (d, 4H, Ar*H*), 7.04 (s, 1H, ArC*H*), 2.35 (s, 6H, ArC*H*₃); (d) and (e) for *d*,*l*-1,2-dibromo-1,2-di(*p*-tolyl)ethane: m/z(EI): 287 [M-Br]⁺, 208 [M-2Br]⁺, ¹H NMR (400 MHz, CDCl₃).

1.5.3 Reactions of 4-methyl benzal bromide with alkenes

In a general procedure, for example, 26.4 mg of **3** (0.10 mmol), 29.0 mg of TPMA (0.10 mmol) and 7.1 mg of copper powder (0.11 mmol) were added to an ampule equipped with a stir bar. The ampule was degassed, backfilled four times with N₂, and then left under N₂. 2 mL of THF solution containing 118 μ L 2,3-dimethyl-2-butene (1.00 mmol) was deoxygenated and then added. The ampule was heated at 40°C for 3 hours. The ampule was immersed in liquid nitrogen and the mixture was diluted with THF and purified by passing through a neutral alumina column. The crude product containing trace of solvent was obtained after removal of solvent under vacuum. The yields of the corresponding compounds were determined by ¹H NMR spectroscopy using DMSO as internal standard.

Entry	Alkene(A)	Temperature	Yield(%) ^b	
		(°C)	coupling product	cycloadduct
1	2,3-dimethyl-2-butene	40	91	0
2	2,3-dimethyl-2-butene	0	89	0
3	cyclohexene	0	94	0
4	styrene	0	95	0
5	benzaldehyde	0	98	0

Table S1 The reactions of **3** with different alkenes^a

a. Reaction conditions: [**3**]:[A]:[Cu]:[TPMA]=1:10:1.1:1, [**3**]=0.05M, in THF, 3 hrs. b. The yield of the product was determined by ¹H-NMR using DMSO as internal standard.

2 Spectra of monomers and polymers

2.1 ¹H NMR spectra of monomers

Figure S5 ¹³C NMR (101 MHz, CDCl₃) spectrum of 1d

2.2 Spectra of polymers

Figure S8 IR spectrum of polymer of **2b**.

Figure S10 ¹H-NMR(400 MHz) spectrum of polymer **2c** in CD₂Cl₂ (solvent #)

Figure S11 ¹³C-NMR(101 MHz) spectrum of polymer **2d**

Figure S12 ¹H-NMR spectrum of crude product of run 1 in Table 3. (reaction conditions: [**3**]:[Cu]:[TPMA]=1:1.1:1, [**3**]=0.05M, THF, 40°C, 10min. Addition of 3.6 mg DMSO as internal standard.)

Figure S13 ¹H-NMR(400 MHz) spectrum of crude product of run 2 in Table 3. ([**3**]:[Cu]:[TPMA]=1:0.5:0.5, [**3**]=0.05M, THF, 40°C, 10min.)

Figure S14 ¹H-NMR(400 MHz) spectrum of crude product of run 3 in Table 3. ([7]:[Cu]:[TPMA]=1:1.1:1, [7]=0.05M, THF, 40°C, 10min. Addition of 2.4 mg DMSO as internal standard)

Figure S16 UV-visible spectra of polymer 2a, 2c and 2d in THF

References

(1) Tyeklar, Z.; Jacobson, R. R.; Wei, N.; Murthy, N. N.; Zubieta, J.; Karlin, K. D. Journal of the American Chemical Society **1993**, 115, 2677.