

Figure S1. FTIR spectra of (a) PGM-g-(PLA-b-PS), (b) Fe(TPP)Cl and (c) Fe(TPP)Cl-MONNs.

Figure S2. Solid-state diffuse reflectance spectra of Fe(TPP)CI-MONNs and MONNs.

Figure S3. SEM elemental mapping images of Fe(TPP)Cl-MONNs in 10 μ m. (Different colors indicate different atoms)

Figure S4. TEM image of the Fe(TPP)Cl-MOPs.

Figure S5. Nitrogen adsorption–desorption isotherms and pore size distribution of Fe(TPP)Cl-MOPs based on DFT method.

Figure S6. The conversion for N-H insertion reactions catalyzed by Fe(TPP)Cl-MOPs or Fe(TPP)Cl-MONNs at different time. Reaction conditions: *p*-chloroaniline (0.2 mmol), EDA (0.2 mmol) and ethyl ether (5 ml) with catalysts Fe(TPP)Cl-MONNs (4 mg, 1.0 μ mol) or Fe(TPP)Cl-MOPs (6 mg, 1.0 μ mol) at ambient temperature under N₂.

Figure S7. TEM image of the Fe(TPP)Cl-MONNs after recycled.

Figure S8. Nitrogen adsorption–desorption isotherms and pore size distribution of Fe(TPP)Cl-MONNs after recycled based on DFT method.

Materials	C [wt %]	H [wt %]	N [wt %]
MONNs	77.83	5.70	0
Fe(TPP)Cl-MONNs	70.51	5.44	1.45
Fe(TPP)Cl-MOPs	76.39	6.006	0.939

Table S1. Element analysis of MONNs, Fe(TPP)Cl-MONNs and Fe(TPP)Cl-MOPs.

Table S2. Porous properties of Fe(TPP)Cl-MONNs catalysts before reaction (1), after 12 runs (2) and Fe(TPP)Cl-MOPs catalysts before reaction (3).

Samples	Pore parameters				
	$S_{BET}[a](m^2g^{-1})$	$S_{mico}^{[b]}(m^2g^{-1})$	$S_{meso}^{[c]}(m^2g^{-1})$	$V_{total}^{[d]}(cm^3g^{-1})$	
(1)	732	179	553	1.21	
(2)	589	138	451	1.06	
(3)	890	287	603	1.04	

^[a] BET specific surface area from N2 adsorption; ^[b] Microporous surface area calculated from *t*plots; ^[c] Mesoporous surface area; ^[d] Total pore volume ($P/P_0=0.995$).

Table S3. Olefination of *p*-Bromobenzaldenhyde by Fe(TPP)Cl and Fe(TPP)Cl-MONNs.

Entry	Catalyst	Olefin/ Azine	Temp. (°C)	Time (h)	Conversion (%) [a]	E/Z (%) [a]
1	Fe(TPP)Cl	4/96	30	4	50.9	91/9
2	Fe(TPP)Cl	22/78	80	2	99.6	95/5
3	Fe(TPP)Cl-MONNs	94/6	30	4	80.3	95/5
4	Fe(TPP)Cl-MONNs	99/1	80	1	95.9	94/6

^[a] determined by GC.

Catalyst	$\begin{array}{c} S_{BET} \\ (m^2g^{-1}) \end{array}$	Benzaldehyde/EDA/PPh3/catalysts	Reaction conditions		E/Z	Ref.
Ru(TPP)(CO)	-	100/120/120/0.7	toluene, 80°C, 2h, added via syringe	95 ^[a]	93/7	[1]
Fe(TPP)Cl	-	100/120/120/2	toluene, 80°C, 1h, added via syringe	96 ^[a]	96/4	[1]
Iron(II) Porphyrin	-	100/110/200/2	toluene, at ambient temperature, 6h, added dropwise of ethyl diazoacetate	94 ^[a]	96/4	[2]
Basic Mg/La mixed oxide	-	1 mmol/1 mmol ^[e] /1 mmol /0.1 g	DMF, RT, 14h	92 ^[b]	99/1	[3]
NAP-MgO	-	1 mmol/1 mmol ^[e] /1 mmol /0.075 g	DMF, RT, 8h	96 ^[a]	99/1	[4]
Myoglobin	-	500/500/500/1	PH=8, Na ₂ S ₂ O ₄ , RT	_[c]	99/1	[5]
Iron (II) NHC complexes	-	100/120/200/10	CD ₃ CN, 70°C, 2h	90 ^[b]	_f	[6]
Copper (I) Iodide	-	100/200/120/5	THF, 60°C, 10h, Slow addition of ethyl diazoacetate	94 ^[a]	95/5	[7]
P4VP-1 or P4VP-2 ^[d]	-	100/120/120/1	THF, 60°C, 24h	84 ^[a]	94/6	[8]
rGO/hemin	-	100/120/120/1	toluene, 80°C, 12h	92 ^[a]	88/12	[9]
Fe(TPP)Cl-MONNs ^[e]	732	100/120/120/2	toluene, 80°C, 2h, added in one portion		93/7	This work

Table S4. Olefination of aldehydes by different catalysts.

^[a] Isolated yield. ^[b] Yield determined by NMR spectroscopy. ^[c] TON=31. ^[d] Ru(II)(salen)(PPh₃)₂ complexes grafted on poly(4-vinylpyridine).

^[e] Fe-porphyrin functionalized microporous organic nanotubes networks.

Table S5. N-H insertion by different catalysts (At room temperature under nitrogen atmosphere unless specified differently).

Catalysts	$S_{BET} (m^2 g^{-1})$	Reaction conditions		Ref.
Ruthenium porphyrin (Ru(TMP)CO)	-	diethylamine/EDA/catalysts=150/100/1; benzene, 2h, added slowly		[10]
Fe(III) corrole or porphyrin	-	aniline/EDA/catalysts=1000/1000/1; diethyl ether, <3min, aerobic, added in one portion		[11]
Tp*Cu	-	aniline/EDA/catalysts =100/100/2; CH_2Cl_2 , 20min, added with a syringe pump	95 ^[c]	[12]
Ru(II)-N-heterocyclic carbine (NHC) complex	-	aniline/EDA/catalysts=100/150/1; CH ₂ Cl ₂ , 6h, 40°C	98 ^[c]	[13]
TBPA·+SbCl ₆	-	<i>p</i> -chloro-aniline/EDA/catalysts=100/100/10; CH ₃ NO ₂ , 14h	86 ^[a]	[14]
Iridium porphyrin (Ir(TTP)CH ₃)	-	aniline/EDA/catalysts=200/100/0.07; CH ₂ Cl ₂ , 2h, -78 to 22 °C	92 ^[b]	[15]
Cytochrome P450-BM3	-	aniline/EDA/Na2S2O4/catalysts=2000/850/1000/1; PH=8, 12h, Ar	68 ^[c]	[16]
Myoglobin (Mb(H64V,V68A))	-	aniline/EDA/Na2S2O4/catalysts=10000/10000/10000/1; PH=8, 12h, RT, Ar	61 ^[c]	[17]
γ-Fe2O3@CuO	-	aniline/EDA/catalysts =100/110/2.4; CH ₂ Cl ₂ , 1h, reflux	96 ^[b]	[18]
SBA-15-FeTPP-x	676	piperidine/EDA/catalysts=120/100/2; CH ₂ Cl ₂ , 2h	96 ^[b]	[19]
Fe3O4@FePMN ^[d]	173	aniline/EDA/catalysts =100/100/1; acetone, 20min,	94 ^[a]	[20]
Fe(TPP)Cl-MONNs ^[e]	732	aniline/EDA/catalysts=100/100/1; ethyl ether, 10 min, added in one portion	97 ^[b]	This work

^[a] Isolated yield. ^[b] Yield determined by NMR spectroscopy. ^[c] Yield determined by GC. ^[d] Fe–porphyrin microporous networks on iron oxide nanoparticles. ^[e] Fe-porphyrin functionalized microporous organic nanotubes networks.

- Y. Chen, L. Huang, M. A. Ranade, X. P. Zhang, *The Journal of Organic Chemistry* 2003, 68, 3714-3717.
- [2] a) G. A. Mirafzal, G. Cheng, L. K. Woo, J. Am. Chem. Soc. 2002, 124, 176-177; b) G. Cheng, G. A. Mirafzal, L. K. Woo, Organometallics 2003, 22, 1468-1474.
- [3] M. L. Kantam, K. B. S. Kumar, V. Balasubramanyam, G. T. Venkanna, F. Figueras, Journal of Molecular Catalysis A: Chemical 2010, 321, 10-14.
- [4] B. M. Choudary, K. Mahendar, M. L. Kantam, K. V. S. Ranganath, T. Athar, Advanced Synthesis & Catalysis 2006, 348, 1977-1985.
- [5] V. Tyagi, R. Fasan, Angew. Chem. 2016, 128, 2558-2562.
- [6] Ö. Karaca, M. R. Anneser, J. W. Kück, A. C. Lindhorst, M. Cokoja, F. E. Kühn, J. Catal. 2016, 344, 213-220.
- [7] H. Lebel, M. Davi, Advanced Synthesis & Catalysis 2008, 350, 2352-2358.
- [8] S. Syukri, W. Sun, F. E. Kühn, *Tetrahedron Lett.* **2007**, *48*, 1613-1617.
- [9] C. Joshi, P. Kumar, B. Behera, A. Barras, S. Szunerits, R. Boukherroub, S. L. Jain, *RSC Advances* 2015, 5, 100011-100017.
- [10] E. Galardon, P. Le Maux, G. Simonneaux, J. Chem. Soc., Perkin Trans. 1 1997, 2455-2456.
- [11] I. Aviv, Z. Gross, Chemistry A European Journal **2008**, *14*, 3995-4005.
- [12] M. E. Morilla, M. M. Diaz-Requejo, T. R. Belderrain, M. C. Nicasio, S. Trofimenko, P. J. Perez, Chem. Commun. 2002, 2998-2999.
- [13] A. Sinha, P. Daw, S. M. W. Rahaman, B. Saha, J. K. Bera, J. Organomet. Chem. 2011, 696, 1248-1257.
- [14] C. Huo, H. Xie, C. Yang, J. Dong, Y. Wang, Tetrahedron Lett. 2016, 57, 2179-2182.
- [15] B. J. Anding, L. K. Woo, Organometallics 2013, 32, 2599-2607.
- [16] Z. J. Wang, N. E. Peck, H. Renata, F. H. Arnold, Chemical Science 2014, 5, 598-601.
- [17] G. Sreenilayam, R. Fasan, Chem. Commun. 2015, 51, 1532-1534.
- [18] A. Ebrahimi, A. Heydari, A. Esrafili, Catal. Lett. 2014, 144, 2204-2209.
- [19] J. Nakazawa, B. J. Smith, T. D. P. Stack, J. Am. Chem. Soc. 2012, 134, 2750-2759.
- [20] J. Yoo, N. Park, J. H. Park, J. H. Park, S. Kang, S. M. Lee, H. J. Kim, H. Jo, J.-G. Park, S. U. Son, ACS Catal. 2015, 5, 350-355.

4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 -0.2 $\stackrel{\circ}{\delta}(ppm)$

5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 $\overset{\circ}{\delta}(ppm)$

5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 δ (ppm)