Supporting Information

Cell-penetrating poly(disulfide)s-based star polymer for simultaneous intracellular delivery of miRNAs and small molecule drugs

Wenhua Yang,^a Changmin Yu,^{*,a} Chunxian Wu,^a Shao Q. Yao^b and Shuizhu Wu^{*,a}

^aState Key Laboratory of Luminescent Materials & Devices, College of Materials Science &

Engineering, South China University of Technology, Guangzhou 510640, China

^bDepartment of Chemistry, National University of Singapore, Singapore 117543

Additional Supporting Video

Supplementary Video: 3D projection of HeLa cells incubated with β CD-CPD-miR-203^{Cy5} (10 μ M) for 2 h and the stained with LysoTrackerTM Green (green) and Hoechst (blue).

Figure S1. Synthetic schemes for the synthesis of β CD-SH. Conditions: **a**) β -Cyclodextrin, triphenylphosphane, iodine, DMF, 15 h, 80 °C, 88%; **b**) thiourea, NaOH, KHSO₄, DMF, 20 h, 70 °C, 85%.

Figure S2. Structure and synthetic schemes of β CD-CPD and the initiator, monomer and terminator used for its synthesis.

Figure S3. ¹H NMR spectrum of β CD-SH (DMSO-*d*₆).

Figure S4. Mass spectrum of β CD-SH. MS m/z (positive ion FAB) 1269.1 for [M+Na]⁺, calcd for (C₄₂H₇O₂₈S₇) 1247.1

Figure S5. ¹H NMR spectrum of β CD-CPD (DMSO-*d*₆).

The number of guanidinium cation unit on each β CD core is calculated as follows: As shown in Figure S6, there are 7 protons in the C(1) position for each β CD molecule, and 8 protons in the C(b,d,e,f) position for each monomer unit. Therefore, the number of guanidinium cation unit on each β CD core has been determined to be:

$$n = \frac{264.69/8}{7/7} = 33.1$$

Figure S6. GPC profile of βCD-CPD. The number and weight-averaged molecular weights ($M_n = 2.78 \times 10^3$ and $M_w = 3.67 \times 10^3$) and polydispersity index (PDI = M_w/M_n) of 1.32 were determined by gel permeation chromatography (GPC) equipped with Waters 1515 Isocratic HPLC pump, Waters 2414 Refractive Index Detector, and two UltrahydrogelTM columns. Elution was 10.0 mM 4-(2-hydroxyethyl)-1-piperazine ethanesulphonic acid (HEPES) buffer at pH 7.4. Elution rate was 0.8 mL min⁻¹. Operation temperature is 40 °C. A series of poly(ethylene glycol) with M_n ranging from 1000 to 21800 g mol⁻¹ were used as standard samples. This value is expectedly smaller than that calculated from ¹H NMR, which is 1.09×10^4 . This is because the mono-dispersed PEG standards used were linear PEG polymers whereas the βCD-CPD polymers were star-shaped. The star-shaped polymer might take up a smaller volume and get trapped inside the column more easily than the linear polymer with the same molecular weight. Therefore, the star-shaped polymers were expected to have a longer retention time which corresponds to a smaller M_n value than the linear polymer with the same molecular weight.

Figure S7. UV-vis absorption spectrum of CPT@ β CD-CPD (6.0 μ M) in HEPES buffer.

Figure S8. 3D CLSM projections showing Z-stack images at different view (step size, 0.163 μ m) of HeLa cells incubated with β CD-CPD-miR-203^{Cy5} (10 μ M) for 2 h, followed by staining with LysoTrackerTM (green) and Hoechst (blue).

Figure S9. FACS analysis of HeLa cells incubated with different complex (10 μ M) for 24 h.

Figure S10. Standard linear calibration curves of CPT UV-vis absorption at 385 nm. It was used for determination of the embedding ratio of CPT.