Supporting Information

Insight into the Polymerization Mechanism of Photoinduced Step

Transfer-Addition & Radical-Termination (START) Polymerizations

Tianchi Xu, Lifen Zhang,* Zhenping Cheng* and Xiulin Zhu

Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China

Table S1. Investigation of reducing agents (RAs) for our polymerization strategy^a

Entry	Reducing agent	Time (h)	Yield (%)	M _{n,GPC} (g/mol)	$M_{\rm w}/M_{\rm n}$
1	<i>i</i> Pr ₂ NEt	24	0	b	b
2	NEt ₃	36	0	<i>b</i>	<i>b</i>
3	Fe(0)	24	83.0	10600	1.55
4	Cu(0)	24	56.8	6100	1.62
5	AsAc	48	0	<i>b</i>	<i>b</i>
6	Glucose	48	0	b	b

^aPolymerization conditions: $[A2]_0:[B3]_0:[Ru(bpy)_3Cl_2]_0:[RA]_0 = 1:1:0.02:0.3$, $n_{(B3)} = 0.5$ mmol, $V_{(DMC)}:V_{(MeCN)} = 3:1$, $V_{Total solvent} = 4.0$ mL, under irradiation of blue LED light ($\lambda_{max} = 464$ nm) at room temperature. ^bNot determined.

Figure S1. The corresponding GPC curve for the polymer sample of Entry 6 in Table 2. Polymerization conditions: $[A2]_0:[B3]_0:[Ru(bpy)_3Cl_2]_0:[AsAc-Na]_0 = 1:1:0.02:0.5$,

 $n_{(B3)} = 0.5 \text{ mmol}, V_{DMC}: V_{MeCN} = 3:1, V_{Total solvent} = 4.0 \text{ mL}, Time = 72 \text{ h}, under irradiation of blue LED light (<math>\lambda_{max} = 464 \text{ nm}$) at room temperature.

Figure S2. ¹H NMR spectrum (**a**) and ¹⁹F NMR spectrum (**b**) of the resultant alternating copolymer (**A2B3**)_n in CDCl₃. Magnification of ¹H NMR spectrum from 4.70 ppm to 6.40 ppm (**c**) and magnification of ¹⁹F NMR spectrum from -138 ppm to -128 ppm (**d**). *Structure defection caused by elimination of HF. Sample (**A2B3**)_n: $M_{n,GPC} = 16400 \text{ g/mol}, M_w/M_n = 1.71, M_{n,NMR} = 16000 \text{ g/mol}; Polymerization conditions: [A2]₀:[B3]₀:[Ru(bpy)₃Cl₂]₀:[AsAc-Na]₀ = 1:1:0.02:0.5, n_(B3) = 0.5 mmol, <math>V_{(DMC)}: V_{(MeCN)} = 5:3, V_{Total solvent} = 0.80 \text{ mL}, Time = 24 \text{ h}, yield% = 85.7, irradiation under blue LED light (<math>\lambda_{max} = 464 \text{ nm}$) at room temperature.

Figure S3. ¹H NMR spectrum of dehalogenation product. The detailed synthesis conditions are described in Scheme 3(b).

Figure S4. Corresponding gel permeation chromatogram (GPC) curves for Figure 3. Polymerization conditions: $[A2]_0:[B3]_0:[Ru(bpy)_3Cl_2]_0:[AsAc-Na]_0 = 1:1:0.02:0.3,$ $n_{(B3)} = 0.5 \text{ mmol}, V_{(DMC)}:V_{(MeCN)} = 3:1, V_{Total solvent} = 4.0 \text{ mL},$ under irradiation of blue LED light ($\lambda_{max} = 464 \text{ nm}$) at room temperature.

Figure S5. Post-polymerization modification for the alternating copolymer $(A2B3)_n$. (a) General post-modification process of the alternating copolymer $(A2B3)_n$. (b) Comparison of ¹H NMR spectra for P1 and P2 in CDCl₃. (c) Comparison of ¹⁹F NMR spectra for P1 and P2 in CDCl₃. (d) The corresponding GPC curves for P1 and P2. P1 stands for the original $(A2B3)_n$ $(M_{n,GPC} = 10300 \text{ g/mol}, M_w/M_n = 2.01, M_{n,NMR} = 10400 \text{ g/mol})$ and P2 stands for the semifluorinated polyethylenes $(F_6H_8)_n$ $(M_{n,GPC} = 4000 \text{ g/mol}, M_w/M_n = 1.48, M_{n,NMR} = 5900 \text{ g/mol})$.