Electronic Supplementary Information (ESI)

Synthesis and characterization of two isomeric dithienopyrrole series

and the corresponding electropolymers

Sebastian Förtsch and Peter Bäuerle* Institute of Organic Chemistry II and Advanced Materials, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany E-mail: peter.baeuerle@uni-ulm.de

Table of Contents:

¹ H and ¹³ C NMR spectra of new monomers	2
Molecular orbital surfaces of DTPs	9
Molecular orbital surfaces of iso-DTPs	10
Electropolymerization of DTPs	11
Electropolymerization of iso-DTPs	17
Spectroelectrochemical measurements of p(DTP)s	23
Spectroelectrochemical measurements of p(iso-DTP)s	24

Figure 1: ¹H NMR spectrum of the Boc-substituted DTP 8 recorded in CDCl₃.

Figure 2: ¹³C NMR spectrum of the Boc-substituted DTP 8 recorded in CDCl₃.

Figure 3: ¹H NMR spectrum of the unsubstituted iso-DTP 2 recorded in CD₂Cl₂.

Figure 4: ¹³C NMR spectrum of the unsubstituted iso-DTP 2 recorded in CD₂Cl₂.

Figure 5: ¹H NMR spectrum of the hexyl-substituted iso-DTP 11 recorded in CD₂Cl₂.

Figure 6: ¹³C NMR spectrum of the hexyl-substituted iso-DTP 11 recorded in CD₂Cl₂.

Figure 7: ¹H NMR spectrum of the 2-ethylhexyl-substituted iso-DTP 12 recorded in CD₂Cl₂.

Figure 8: ¹³C NMR spectrum of the 2-ethylhexyl-substituted iso-DTP 12 recorded in CD₂Cl₂.

Figure 9: ¹H NMR spectrum of the 2-hexyldecyl-substituted iso-DTP 13 recorded in CD₂Cl₂.

Figure 10: ¹³C NMR spectrum of the 2-hexyldecyl-substituted iso-DTP 13 recorded in CD₂Cl₂.

Figure 11: ¹H NMR spectrum of the phenyl-substituted iso-DTP 14 recorded in CD₂Cl₂.

Figure 12: ¹³C NMR spectrum of the phenyl-substituted iso-DTP 14 recorded in CD₂Cl₂.

Figure 13: ¹H NMR spectrum of the benzoyl-substituted iso-DTP 15 recorded in CD₂Cl₂.

Figure 14: ¹³C NMR spectrum of the benzoyl-substituted iso-DTP 15 recorded in CD₂Cl₂.

Figure 15: Molecular orbital surfaces of DTPs with different residues R at the nitrogen.

Figure 16: Molecular orbital surfaces of iso-DTPs with different residues R at the nitrogen.

Figure 17: Electropolymerization of the DTP monomer **1** with a H residue at the nitrogen (top left) and the characterization of the obtained film using different scan rates (top right) and carrying out 30 scans at a rate of 100 mV/s (bottom left). Dependency of the anodic peak currents I_{PA} and the cathodic peak currents I_{PC} from the applied scan rate (bottom right).

Figure 18: Electropolymerization of the DTP monomer **5** with a 2-ethylhexyl residue at the nitrogen (top left) and the characterization of the obtained film using different scan rates (top right) and carrying out 30 scans at a rate of 100 mV/s (bottom left). Dependency of the anodic peak currents I_{PA} and the cathodic peak currents I_{PC} from the applied scan rate (bottom right).

Figure 19: Electropolymerization of the DTP monomer **6** with a 2-hexyldecyl residue at the nitrogen (top left) and the characterization of the obtained film using different scan rates (top right) and carrying out 30 scans at a rate of 100 mV/s (bottom left). Dependency of the anodic peak currents I_{PA} and the cathodic peak currents I_{PC} from the applied scan rate (bottom right).

Figure 20: Electropolymerization of the DTP monomer 7 with a phenyl residue at the nitrogen (top left) and the characterization of the obtained film using different scan rates (top right) and carrying out 30 scans at a rate of 100 mV/s (bottom left). Dependency of the anodic peak currents I_{PA} and the cathodic peak currents I_{PC} from the applied scan rate (bottom right).

Figure 21: Electropolymerization of the DTP monomer **8** with a Boc residue at the nitrogen (top left) and the characterization of the obtained film using different scan rates (top right) and carrying out 30 scans at a rate of 100 mV/s (bottom left). Dependency of the anodic peak currents I_{PA} and the cathodic peak currents I_{PC} from the applied scan rate (bottom right).

Figure 22: Electropolymerization of the DTP monomer **9** with a benzoyl residue at the nitrogen (top left) and the characterization of the obtained film using different scan rates (top right) and carrying out 30 scans at a rate of 100 mV/s (bottom left). Dependency of the anodic peak currents I_{PA} and the cathodic peak currents I_{PC} from the applied scan rate (bottom right).

Figure 23: Electropolymerization of the iso-DTP monomer **2** with a H residue at the nitrogen (top left) and the characterization of the obtained film using different scan rates (top right) and carrying out 30 scans at a rate of 100 mV/s (bottom left). Dependency of the anodic peak currents I_{PA} at 0.63 V and the cathodic peak currents I_{PC} from the applied scan rate (bottom right).

Figure 24: Electropolymerization of the iso-DTP monomer **12** with a 2-ethylhexyl residue at the nitrogen (top left) and the characterization of the obtained film using different scan rates (top right) and carrying out 30 scans at a rate of 100 mV/s (bottom left). Dependency of the anodic peak currents I_{PA} and the cathodic peak currents I_{PC} from the applied scan rate (bottom right).

Figure 25: Electropolymerization of the iso-DTP monomer **13** with a 2-hexyldecyl residue at the nitrogen (top left) and the characterization of the obtained film using different scan rates (top right) and carrying out 30 scans at a rate of 100 mV/s (bottom left). Dependency of the anodic peak currents I_{PA} at 0.53 V and the cathodic peak currents I_{PC} from the applied scan rate (bottom right).

Figure 26: Electropolymerization of the iso-DTP monomer **14** with a phenyl residue at the nitrogen (top left) and the characterization of the obtained film using different scan rates (top right) and carrying out 30 scans at a rate of 100 mV/s (bottom left). Dependency of the anodic peak currents I_{PA} and the cathodic peak currents I_{PC} from the applied scan rate (bottom right).

Figure 27: Electropolymerization of the iso-DTP monomer **10** with a Boc residue at the nitrogen (top left) and the characterization of the obtained film using different scan rates (top right) and carrying out 30 scans at a rate of 100 mV/s (bottom left). Dependency of the anodic peak currents I_{PA} and the cathodic peak currents I_{PC} from the applied scan rate (bottom right).

Figure 28: Electropolymerization of the iso-DTP monomer **15** with a benzoyl residue at the nitrogen (top left) and the characterization of the obtained film using different scan rates (top right) and carrying out 30 scans at a rate of 100 mV/s (bottom left). Dependency of the anodic peak currents I_{PA} and the cathodic peak currents I_{PC} from the applied scan rate (bottom right).

Figure 29: UV-Vis-NIR spectra obtained from spectroelectrochemical measurements of the p(DTP)s bearing H (**P1**, top left), 2-ethylhexyl (**P5**, top right), 2-hexyldecyl (**P6**, middle left), phenyl (**P7**, middle right), Boc (**P8**, bottom left), or benzoyl (**P9**, bottom right) residues at the nitrogen, respectively. Applied voltages are stated vs. Ag/AgCl. Black arrows show the changes starting at low potentials, blue arrows indicate the further changes at high potentials. Artefacts are marked with * in the spectra.

Figure 30: UV-Vis-NIR spectra obtained from spectroelectrochemical measurements of the p(iso-DTP)s bearing H (**P2**, top left), hexyl (**P11**, top right), 2-ethylhexyl (**P12**, middle left), 2-hexyldecyl (**P13**, middle right), phenyl (**P14**, bottom left), Boc (**P10**, bottom right), or benzoyl (**P15**, bottom) residues at the nitrogen, respectively. Applied voltages are stated vs. Ag/AgCl. Artefacts are marked with * in the spectra.