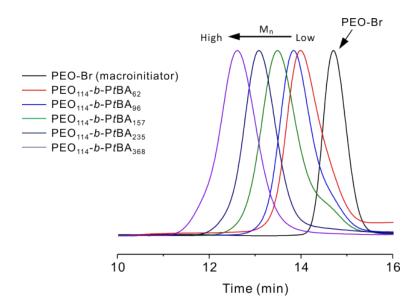
Highly Stable Au Nanoparticles with Double Hydrophilic Block Copolymer Templation: Correlation between Structure and Stability

Eunyong Seo,^{1†} Sang-Ho Lee,^{2†} Sangho Lee,³ Soo-Hyung Choi,³ Craig J. Hawker,² and Byeong-Su Kim^{1,4}*


¹Department of Energy Engineering, Ulsan National Institute of Science and Technology (UNIST),

Ulsan 44919, Korea

²Materials Research Laboratory and Departments of Materials, Chemistry and Biochemistry,
 University of California, Santa Barbara, California 93106, United States
 ³Department of Chemical Engineering, Hongik University, Seoul 04066, Korea
 ⁴Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST),
 Ulsan 44919, Korea

[†]These authors contributed equally to this work.

E-mail: bskim19@unist.ac.kr

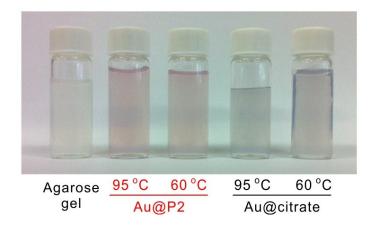
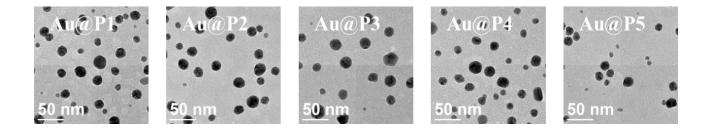


Figure S1. SEC traces of PEO macroinitiator and PEO-*b*-P*t*BA copolymers under GPC analysis in chloroform. The molecular weight and molecular weight distribution was determined by using PMMA as a standard.


Table S1. Characterization of micelles and Au NPs modified by the PEO_{5k}-b-PAA_{7k} copolymer.

R^{a}	0.5	1.0	1.5	2.0	3.0	4.0
D _h (nm) ^b	56.6	75.7	100.6	101.1	112.4	97.5
$D_{\mathrm{NP}}(\mathrm{nm})^{\mathrm{c}}$	44.7 ± 11.7	37.6 ± 15.3	25.9 ± 8.7	21.3 ± 8.1	16.7 ± 3.3	17.8 ± 2.3

^aThe ratio of acrylic acid (AA) in the copolymer to Au precursor is denoted as R. ^bAveraged size of micelles is denoted as D_h , which was evaluated from the three measurements by DLS. ^cDiameter of Au NP is denoted as D_{NP} , which was calculated by analyzing more than 100 Au NPs observed in TEM images.

Figure S2. Thermal dispersibility of Au@P2 and Au@citrate NPs in agarose gel matrix. The particle concentration of Au NPs in each gel was fixed to 0.10 nM.

Figure S3. TEM images of a series of Au@DHBC NPs prepared at R = 3.

Table S2. Theoretical and yield of Au and DHBC.

Entry	Composition	M _{n, NMR,} (PEO- <i>b</i> -PAA)	Theoretical mass ^a		Au yield		DHBC yield	
			Au	DHBC	Mass	Mass	Mass	Mass
			(mg)	(mg)	(mg)	(%)	(mg)	(%)
Au@P1	PEO _{5k} -b-PAA _{5k}	9600	13.2	30.5	12.3	93.3	29.8	97.8
Au@P2	PEO _{5k} -b-PAA _{7k}	12100	13.2	24.8	12.3	93.3	19.5	78.7
Au@P3	PEO _{5k} -b-PAA _{11k}	16500	13.2	20.8	12.0	91.2	16.1	77.2
Au@P4	PEO _{5k} -b-PAA _{17k}	22100	13.2	18.7	12.0	91.2	15.0	80.3
Au@P5	PEO _{5k} -b-PAA _{27k}	31700	13.2	17.1	11.8	89.4	13.6	79.4

^a The theoretical mass of Au and DHBC equals the value used in the synthesis of NP. ^b The yield of Au NPs was calculated by ICP-OES analysis. ^c The mass of DHBC = [The ratio of weight% of polymer to weight% of Au (based on the TGA analysis)] × [mass of Au].

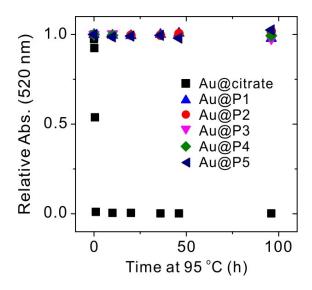


Figure S4. Thermal stability of Au@citrate and Au@DHBC NPs at 95 °C.