Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is © The Royal Society of Chemistry 2017

Electronic supplementary information for : Construction of Flexible and Stable Near-Infrared Absorbing Polymer Films Containing Nickel-Bis(dithiolene) Moieties via Ligand-Exchange Post-Polymerization Modification

Jianhua Han,¹Zhihuan Weng, ¹Zuoqiang Wu,¹Jingwen Cai,¹ Jinyan Wang^{*,2} and Xigao Jian² 1. Polymer Science & Materials, Chemical Engineering College, Dalian University of Technoloy, Dalian, 116024, China. 2. State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China. E-mail: wangjinyan@dlut.edu.cn

Table of Contents

1. $^1\mathrm{H}^{/13}\mathrm{C}$ -NMR and HRMS of the compexes and polymers

- 2. NIR spectra, CV, TGA and XRD curves of the complexes and polymers
- 3. The calculation process of coordination ratio by ¹H-NMR and ICP measurement
- 4. Stress-strain curves of the polymers
- 5. Elemental analysis

1. ¹H/¹³C -NMR and HRMS of the monomers and polymers

Figure S1. ¹H-NMR and ¹³C-NMR of Ph-O

Figure S2. ¹H-NMR and ¹³C-NMR of Ph-N

Figure S3. ¹H-NMR and ¹³C-NMR of Ni-O

Figure S4. ¹H-NMR and ¹³C-NMR of Ni-N

Figure S5. HRMS of Ni-O

Figure S6. HRMS of Ni-N

Figure S8. ¹³C-NMR of PFO in CDCl₃

Figure S9. GPC curves of PFO

Figure S10. ¹H-NMR spectra of PFO and NiO-P2 in CDCl₃

Figure S11. ¹³C-NMR spectra of PFO and NiO-P2 in CDCl₃

2. NIR absorption spectra, CV and XRD curves of the complexes and polymers

Figure S12. NIR spectra of the polymer films (PFO: thickness=40 μ m; NiO-P2: thickness=25 μ m) synthesized without additional ligand Ph-O.

Figure S13. FT-IR spectra of NiO-P series polymers

Figure S14. FT-IR spectra of NiN-P series polymers

Table S1. The post-polymerization modification of PFO with Ph-N in dioxane

(b) in thin film states

Figure S15. NIR spectra of the polymers synthesized in dioxane with Ph-N

Figure S16. CV curves of the complexes and polymers

Figure S17. TGA curves of the complexes and polymers .

Figure S18. DSC curve of PFO.

Figure S19. XRD measurements of the polymer films

3. The calculation process of coordination ratio by ¹H-NMR.

▲ For NiO-P2, the nickel bis(dithiolene) moiety is formed from the crosslinked part. Therefore, we used this part for calculation of NiO-P2. For NiO-P3~P9 and NiN-P1~P9, the nickel bis(dithiolene) moiety is formed from two part: the additional ligand part(x) and the crosslinked part(y). We show that the crosslinked part(y) is rarely formed in NiO-P3~P9 and NiN-P1~P9. It is hard to confirm their corresponding content. However, the ratio of additional ligand part(x) can be determined by ¹H-NMR, as shown below. Thus, the R(x) in Table 1 referred to the ratio of crosslinked part for NiO-P2 and the ratio of additional ligand part(x) for NiO-P3~P9 and NiN-P1~P9.

(1) For NiO-P series polymers, take NiO-P6 as an example:

Figure S20. ¹H-NMR of NiO-P6

The coordination ratio corresponds to the percent of x repeat units in final polymer. *The coordination ratio*

$$=\frac{x}{x+y+z} = \frac{area(c) \div 6}{(area(b) - x \times 4) \div 8} = \frac{area(c) \div 6}{(area(b) - (area(c) \div 6 \times 4) \times 4) \div 8}$$
$$=\frac{0.07 \div 6}{(1.00 - 0.07 \div 6 \times 4) \div 8} = \frac{0.0117}{0.1192} \approx 0.0982 \approx 0.10$$

Figure S21. ¹H-NMR of NiO-P3.

Figure S22. ¹H-NMR of NiO-P4.

Figure S24 . ¹H-NMR of NiO-P7

Table S2. The post-polymerization modification of PFO with Ph-O in dioxane

polymers	P ₄ S ₁₀ /NiCl ₂ .6H ₂ O (mmol)	area of c (methyl)	the coordination ratio
NiO-P3	0.60/0.15	0.05	0.07
NiO-P4	0.80/0.20	0.19	0.29
NiO-P5	0.60/0.30	0.08	0.11
NiO-P6	0.60/0.60	0.07	0.10
NiO-P7	0.80/0.40	0.28	0.46
NiO-P8	0.80/0.80	0.09	0.13

(2) For NiN-P series polymers, take NiN-P8 as an example:

Figure S26. ¹H-NMR of NiN-P8

The coordination ratio corresponds to the percent of x repeat units in final polymer. *The coordination ratio*

$$=\frac{x}{x+y+z} = \frac{area(c) \div 12}{(area(b) - x \times 4) \div 8} = \frac{area(c) \div 12}{(area(b) - (area(c) \div 12 \times 4) \times 4) \div 8}$$
$$=\frac{0.44 \div 12}{(1.00 - 0.44 \div 12 \times 4) \div 8} = \frac{0.03667}{0.1067} \approx 0.3437 \approx 0.34$$

Figure S28. ¹H-NMR of NiN-P2

Figure S30. ¹H-NMR of NiN-P4

Figure S31. ¹H-NMR of NiN-P5

Figure S32. ¹H-NMR of NiN-P6

Figure S34. ¹H-NMR of NiN-P9

polymers	P ₄ S ₁₀ /NiCl ₂ .6H ₂ O (mmol)	area of c (methyl)	the coordination ratio
NiN-P1	0.80/0.40	0.13	0.09
NiN-P2	1.00/0.50	0.19	0.14
NiN-P3	1.20/0.50	0.27	0.20
NiN-P4	1.40/0.70	0.28	0.21
NiN-P5	1.60/0.80	0.31	0.23
NiN-P6	1.80/0.90	0.34	0.26
NiN-P7	2.00/1.00	0.40	0.31
NiN-P8	2.20/1.10	0.44	0.34
NiN-P9	2.40/1.20	0.32	0.24
NiN-P10	2.60/1.30		gelatin

Figure S35.The gelatin state of NiN-P10.

(2) ICP measurement.

The ICP measurement of Ni-content in NiO-P2 is 0.15 wt/%. The calculated process

of coordination ratio is shown below:

Based on idealized chain mode:

For NiO-P2:

The equation can be described as follows:

 $\frac{The \text{ mass of Ni in 1g polymer}}{1g \text{ polymer}} = \frac{\frac{x}{2} \cdot 58.6934(\text{relative atomic weight of Ni})}{556.6170 \times y + 647.4324 \times \frac{x}{2} + 558.7390 \times \frac{x}{2}}$

Then,

$$\frac{0.0015g}{1g} = \frac{\frac{x}{2} \cdot 58.6934 (relative atomic weight of Ni)}{y \times 556.6170 + x \times 603.0857}$$

The coordination ratio $R(x) = \frac{x}{x+y} \approx 0.0285 \approx 0.03$

▲ As be noted, it is difficulties in obtaining accurate Ni content on metal tetrathiolate polymers.¹⁻³ We found that incomplete dissolution often ocuur in the after-processing of metal tetrathiolate polymers for ICP measurement. The same situation has been mentioned by Reynolds et al.¹

4. The stress-strain curves of polymers

Figure S36.Stress-strain curves of PFO

Figure S37. Stress-strain curves of NiO-P2

Figure S38. Stress-strain curves of NiO-P6

Figure S39. Strss-strain curves of NiN-P8

5. Elemental analysis

Polymer	Formula	Calcu	lated (%	5)	Found(%) ^a				
		C	Н	N	C	Н	N	C/H ^b	
PFO	$C_{39}H_{24}O_4$	84.16	4.35	-	83.17	4.25	-	19.55	
NiO-P6	_c	-	-	-	76.65	4.33	-	17.70	
NiO-P7	_ c	-	-	-	74.75	5.46	-	13.70	
LPM-P6	_ c	-	-	-	76.42	5.28	1.05	14.47	
NiN-P9	_ c	-	-	-	76.75	5.28	1.07	14.53	
NiN-P8	_ c	-	-	-	75.69	5.48	1.31	13.82	

Table S4. Elemental analysis data of the polymers

^a The elemental analysis was measured in CHN mode. Each sample was measured twice to calculate the average value (see Figure S40 and S41). The CHNS mode was forbidden when sample contains metal. The Ni content was measured by ICP and shown in Table 2.

^b With an increase of the nickel-bis(dithiolene) moieties with long alkyl chain in the polymer backbone, the degree of unsaturation (C/H ratio) was decreased. After modification, the C/H ratio decreased as shown in Table S4.

^c Due to the existence of crosslinked part(y segment in Scheme 2), it is difficult to calculate the theoretical value.

No.	Name	Wght. [mg]	Info	02	Content [%]	Peak Area	
28	wh1	2.2900	Nu	Index 1	N: 0.276	159	
					C: 83.25	45930	
					H: 4.329	7209	
29	wh1	1.8120	Nu	Index 1	N: 0.175	80	
					C: 83.08	36306	
					H: 4.179	5583	
30	wh2	2.0750	Nu	Index 1	N: 0.186	97	
					C: 76.48	38264	
					H: 4.285	6497	
31	wh2	2.4850	Nu	Index 1	N: 0.091	57	
					C: 76.82	45987	
					H: 4.374	7876	
32	wh3	2.0700	Nu	Index 1	N: 0.083	43	
					C: 74.63	37252	
					H: 5.252	7878	
33	wh3	2.7040	Nu	Index 1	N: 0.085	58	
					C: 74.86	48752	
					H: 5.660	11000	
34	wh4	1.7030		Index 1	N: 1.045	465	
					C: 76.24	31336	
					H: 5.172	6439	
35	wh4	2.2090		Index 1	N: 1.064	647	
					C: 76.59	40783	
					11. 5.550	0003	
36	wh5	1.9100		Index 1	N: 1.109	573	
					C: 76.76	35362	
					H: 5.281	7329	
37	wh5	1.7330		Index 1	N: 1.032	468	
					U: 76.74	32095	
					п. э.2о2	0080	

Figure S40. Elemental analysis data of the polymers. (Name: wh1 refers to PFO, wh2 refers to NiO-P6, wh3 refers to NiO-P7, wh4 refers to LPM-P6, wh5 refers to NiN-P9. "Nu" (in Info column) means that no N was detected in the corresponding sample. Each sample was measured twice to calculate the average value.)

No. Na	ime	Wght. [mg]	Info	02	Content [%]	Peak Area	
38 wh	6	1.9800		Index 1	N: 1.281 C: 75.70 H: 5.521	706 36148 7919	
39 wh	6	1.5900		Index 1	N: 1.344 C: 75.68 H: 5.432	579 29054 6321	
					1		
					,		

References

- 1. F. Wang, Y. J. Qiu and J. R. Reynolds, *Macromolecules*, 1991, **24**, 4567-4574.
- 2. C. W. Dirk, M. Bousseau, P. H. Barrett, F. Moraes, F. Wudl and A. J. Heeger, *Macromolecules*, 1986, **19**, 266-269.
- 3. R. Vicente, J. Ribas, P. Cassoux and L. Valade, *Synthetic Metals*, 1986, **13**, 265-280.