Journal Name

ARTICLE

Supplementary Information on:

Received 00th January 20xx, Accepted 00th January 20xx

Novel photoacid generator for cationic photopolymerization

DOI: 10.1039/x0xx00000x

www.rsc.org/

Nicolas Klikovits,^a Patrick Knaack,^a Daniel Bomze,^a Ingo Krossing^b and Robert Liska^a

Figure 1 Simultaneous thermal analysis (STA) of I-AI with thermogravimetric analysis (TGA —) and differential scanning calorimetry (DSC —) curves and heating rate (—)

Figure 2 Simultaneous thermal analysis (STA) of **S-AI** with thermogravimetric analysis (TGA —) and differential scanni calorimetry (DSC —) curves and heating rate (—)

^{a.} Institute of Applied Synthetic Chemistry, TU-Wien, Vienna, Austria.

^{b.} Institute of Inorganic and Analytical Chemistry, University Freiburg, Freiburg,

Germany.

ARTICLE

Figures 1 and 2 show the STA plots of I-AI and S-AI, respectively. As the thermal stability is determined by the cation of the salts, all analyzed diphenyliodonium PAGs showed similar thermal degradation by a drop in the thermogravimetric curve and decomposition processes in the DSC-curve starting at 220 °C. All analyzed triarylsulfonium PAGs showed thermal stability below 300 °C by a constant thermogravimetric and DSC-Curve. The compared PAGs only differed in their melting points, which are characterized by an abrupt minimum in the DSC curve.