Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is © The Royal Society of Chemistry 2017

Multifunctional porous Tröger's base polymer with tetraphenylethene unit: CO₂ adsorption, luminescence and sensing property

Yuanzheng Cui, Yuchuan Liu, Jiancong Liu, Jianfeng Du, Yue Yu, Shun Wang,

Zhiqiang Liang* and Jihong Yu*

State Key Lab of Inorganic Synthesis and Preparative Chemistry, Jilin University,

Changchun, 130012, P. R. China

E-mail: <u>liangzq@jlu.edu.cn; jihong@jlu.edu.cn</u>.

Fig. S1 Experimental powder X-ray diffraction PXRD pattern of LMOP-15

Fig. S4 Size distribution of LMOP-15 in EtOH (0.1 mg/mL) determined by DLS analysis

Fig. S5 TEM images of LMOP-15.

Heat of CO₂ Adsorption Calculation

The isosteric heats (Q_{st}) of adsorption for LMOP-15 were calculated by fitting the CO₂ adsorption isotherms measured at 273 K, 283 K and 298 K to the Virial equation.

$$\ln P = \ln N + \frac{1}{T} \sum_{i=0}^{m} a_i N_i + \sum_{i=0}^{n} b_j N_i$$

$$Q_{st} = -R \sum_{i=0}^{m} a_i N_i$$
N: adsorbed volume (cm³/g);
P: pressure (mmHg);
T: temperature (K);
 a_i, b_j : constants;
R: 8.314 J·mol⁻¹·K⁻¹

Fig. S7Virial fitting for CO₂ isotherms of LMOP-15.

Fig. S8 The isosteric heat of adsorption for LMOP-15.

Fig. S9 Nitrogen adsorption isotherm at 273 K of LMOP-15.

Fig. S10 CO_2/N_2 selectivity for LMOP-15 at 273 K calculated using the Henry's Law constants in the linear low pressure range.

Fig. S11 Luminescent spectra of LMOP-15 ($\lambda_{ex} = 380$ nm) in solid state, as well as LMOP-15 dispersed in ethanol (0.1 mg/mL). The photographs were taken under visible light and UV light illumination (365 nm).

Fig. S12 Luminescent spectra of LMOP-15 ($\lambda_{ex} = 380$ nm) in different solvents (0.1 mg/mL).

Fig. S13 Fluorescent titrations of LMOP-15 dispersed in ethanol solution (0.1 mg/mL) with the addition of different metal ions in ethanol with a concentration of 5.9 μ M (λ_{ex} = 380 nm). The slit width for excitation and emission is 2.5 nm and 2.5 nm, respectively.

Fig. S14 Fluorescent titrations of **LMOP-15** dispersed in ethanol solution (0.1 mg/mL) with the addition of NACs in ethanol with a concentration of 47.62 μ M (λ_{ex} = 380 nm). The slit width for excitation and emission is 2.5 nm and 2.5 nm, respectively.

Fig. S15 The quenching and recovery test of LMOP-15 dispersed in ethanol in the presence of Cu^{2+} solution (13.6 μ M).

Fig. S16 The quenching and recovery test of LMOP-15 dispersed in ethanol in the presence of PA solution (90.9 μ M).

Fig. S17 ¹H and ¹³C NMR spectra of 1,1,2,2-tetrakis(4-nitrophenyl)ethene (TNPE).

Fig. S18 ¹H and ¹³C NMR spectra of 1,1,2,2-tetrakis(4-aminophenyl)ethene (TAPE).

Element	LMOP-15	Calculated
C [%]	78.57	81.79
H [%]	5.79	5.49
N [%]	10.53	12.72

Table S1 Elemental analysis of LMOP-15

Limit of detection (LOD) Calculation

Limit of detection of was determined according to the following definitions:

Firstly, the standard deviation (S_b) was calculated by measuring the fluorescence intensity of **LMOP-15** in ethanol for 11 times and then got the average intensity (\bar{x}). By fitting the data into equation (1), the value of standard deviation (S_b) was obtained. Secondly, a certain amount of picric acid was added into the solvent and the resulting variation of the intensity (Δl) was recorded. By fitting the data into equation (2), where Δl is the variation of intensity, and Δc is the variation of quencher concentration, the value of precision S was calculated. Finally the LOD was calculated according to Function (3). The LODs of **LMOP-15** for Cu²⁺ and PA are 5.1×10^{-8} M and 3.3×10^{-7} M, respectively.