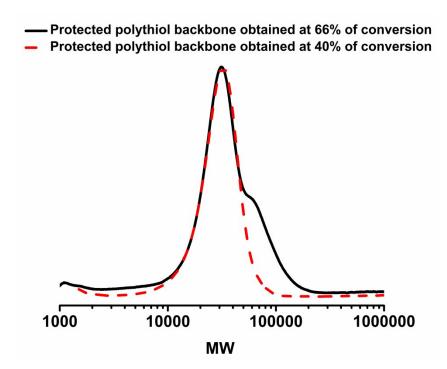
Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is © The Royal Society of Chemistry 2017

Synthesis of molecular brushes by telomerization


Coralie Teulère and Renaud Nicolaÿ*

Matière Molle et Chimie, École Supérieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI)—CNRS, UMR-7167, Paris Sciences et Lettres (PSL) Research University, 10 rue Vauquelin, 75005 Paris, France.


* Corresponding author: email renaud.nicolay@espci.fr

Supporting Information

 $\textbf{Scheme S1}: \textbf{Synthesis of PBMA brushes by telomerization via a two-pot two-step aminolysis and side-chain growth sequence\\$

Figure S1: 1 H NMR spectrum of polymer **P1.** Experimental conditions: [BenzMA] $_{0}$ /[XEMA] $_{0}$ /[CDB] $_{0}$ /[AIBN] $_{0}$ = 2.3/1/0.02/0.002 in anisole 40 vol%, 20 h at 65 $^{\circ}$ C

Figure S2: SEC traces of protected polythiol backbones. Black solid line experimental conditions: $[BenzMA]_0/[XEMA]_0/[CDB]_0/[AIBN]_0 = 2.3/1/0.02/0.002$ in anisole 40 vol%, 20 h at 65 °C; monomer conversion = 66%. Red dashed line experimental conditions: $[BenzMA]_0/[XEMA]_0/[CDB]_0/[AIBN]_0 = 2.3/1/0.013/0.0013$ in anisole 40 vol%, 20 h at 65 °C; monomer conversion = 40%.

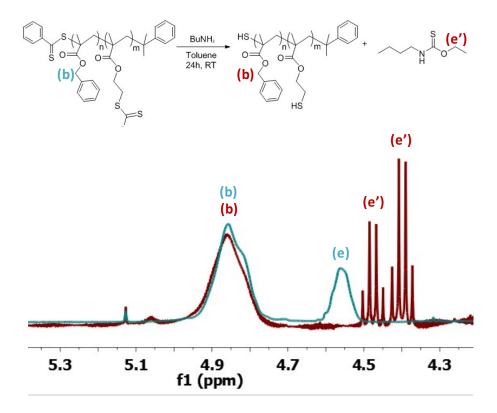
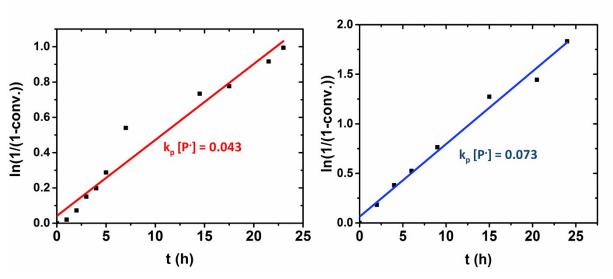
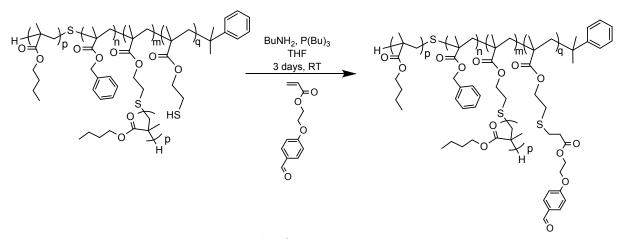




Figure S3: ¹H NMR spectra before (blue) and after (red) polythiol deprotection

Figure S4: Kinetic plot for (a) **P5** polymerization in 50 % toluene solution at 65 °C with a ratio of $[BMA]_0/[SH]_0/[AIBN]_0 = 60/1/0.01$ and (b) **P7** polymerization in 50 % toluene solution at 65 °C with a ratio of $[BMA]_0/[SH]_0/[AIBN]_0 = 40/1/0.01$

Scheme S2: General procedure for thiol titration on bottlebrush polymers

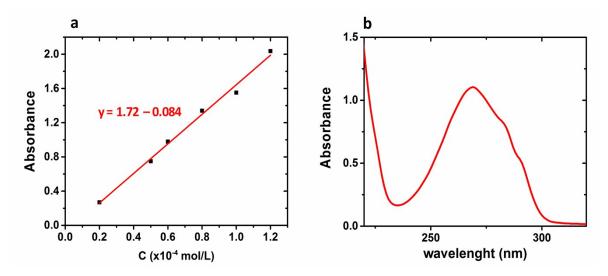
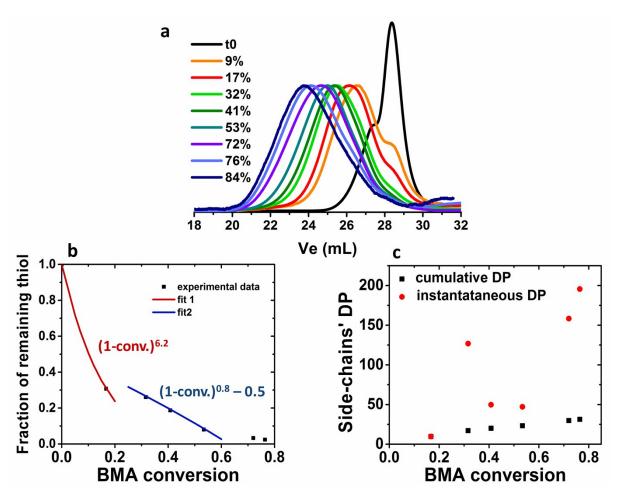
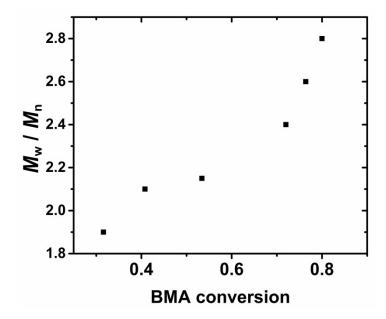




Figure S5: (a) Calibration curve of 4-(2-acryloxyethoxy)benzaldehyde at 270 nm $-\epsilon$ = 17 200 M⁻¹.cm⁻¹ (b) UV spectrum of polythiol **P1** after deprotection and functionalization with 4-(2-acryloxyethoxy)benzaldehyde.

Figure S6: (a) Evolution of SEC traces of the crude reaction medium during the synthesis of brush **P7**. Polymerization conditions: $[BMA]_0/[SH]_0/[AIBN]_0 = 40/1/0.01$ in toluene 50 vol%, 24 h at 65 °C. (b) Plot of the remaining fraction of thiol vs BMA conversion during the synthesis of brush **P7** (c) Plot of side-chains cumulated DP (black squares) ($[M]_0-[M]_t$)/($[S]_0-[S]_t$) and instantaneous DP (red circles) ($[M]_{t-1}-[M]_t$)/($[S]_{t-1}-[S]_t$) vs BMA conversion during the synthesis of brush **P7**.

Figure S7: Plot of M_w/M_n vs conversion during brush **P7** polymerization. Polymerization conditions: $[BMA]_0/[SH]_0/[AIBN]_0 = 40/1/0.01$ in toluene 50 vol%, 24 h at 65 °C.

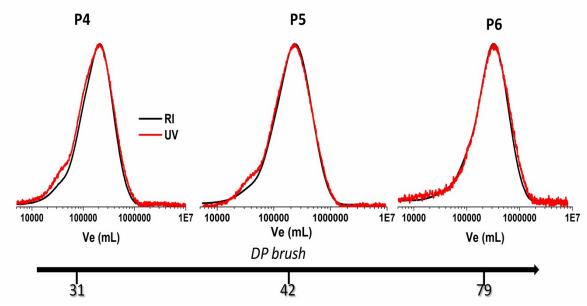


Figure S8: SEC traces of the crude reaction media at the end of the syntheses of brushes with different side-chain lengths.

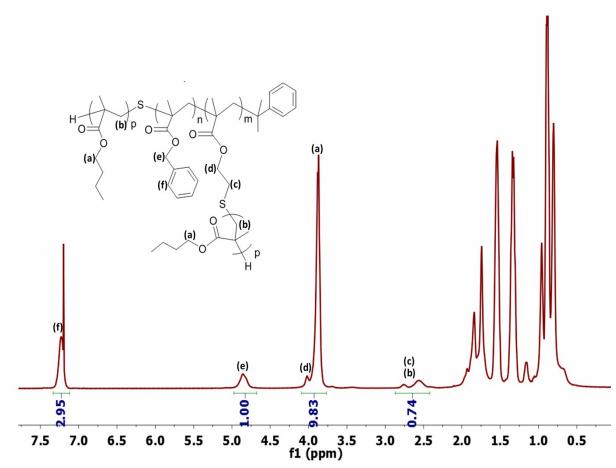
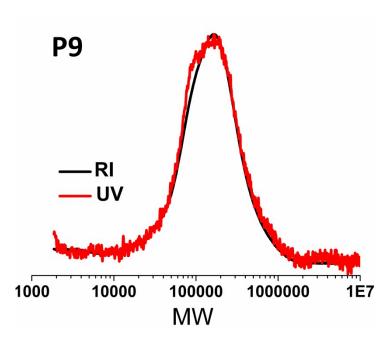



Figure S9: 1 H NMR spectrum of bottlebrush polymer P4. Polymerization conditions: $[BMA]_{0}/[SH]_{0}/[AIBN]_{0} = 40/1/0.01$ in toluene 50 vol%, 24 h at 65 °C.

Figure S10: SEC traces of brush **P9** synthesized via a two-step process. Experimental conditions: $[NIPAM]_0/[SH]_0/[AIBN]_0 = 40/1/0.01$ in DMF 50 vol%, 1 h30 at 65 °C. SEC traces of the crude reaction medium.