Electronic Supplementary Information

PDMAEMA-b-PLMA-b-POEGMA triblock terpolymers via RAFT polymerization and

their self-assembly in aqueous solutions

Athanasios Skandalis and Stergios Pispas*

Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation,

48 Vassileos Constantinou Ave., 11635 Athens, Greece

Figure S1. Comparative ATR-FTIR spectra for samples PDMAEMA₁₃-b-PLMA₃₉-b-POEGMA₈ (black) and QPDMAEMA₁₃-b-PLMA₃₉-b-POEGMA₈ (red).

Table S1. DLS, SLS and FS results for PDMAEMA₁₃-b-PLMA₃₉-b-POEGMA₈ micelles in aqueous solutions using the solvent-switch (THF) and thin film solubilization protocols

Sample	Solubilization Protocol	M _{w app} ^a g/moL (x 10 ⁶)	N _{agg}	R _h b (nm)	PDI ^b	CMC ^c g/mL (x 10 ⁻⁶)
PDMAEMA ₁₃ -b-	THF	1.66	1064	30	0.247	1.00
PLMA ₃₉ -b-POEGMA ₈	Thin Film	9.42	6038	60	0.261	5.00
QPDMAEMA ₁₃ -b-	THF	1.14	65	77	0.458	5.08
PLMA ₃₉ -b-POEGMA ₈	Thin Film	1.31	7507	148	0.384	2.85

^a Determined by SLS. ^b Determined by DLS at 90°. ^c Determined by FS using pyrene as the probe.

From the data presented in Table S1 it can be concluded that neither additional solubilization protocol leads to the formation of simple core-shell micelles for sample PDMAEMA₁₃-b-PLMA₃₉-b-POEGMA₈. Apparently, the high PLMA content leads to the formation of rather kinetically frozen structures also in these cases with possibly a compound micelle structure as in the case of the direct dissolution protocol. In the case of QPDMAEMA₁₃-b-PLMA₃₉-b-POEGMA₈ the use of THF as a common solvent facilitates the formation of smaller core-shell micelles, and the higher water solubility of QPDMAEMA block may also support this self-organization route. It is interesting to note that CMC values are influenced by the protocol used in all cases pointing to a difference in internal structure of the micelles, formation route, as well as their capability for encapsulation of low molecular weight hydrophobic compounds (like the pyrene probe). Limiting values for I₁/I₃ ratio are below 1.2 in all cases, denoting a very non-polar environment for pyrene at higher terpolymer concentrations (Fig. S2) within the PLMA cores.

Figure S2. Comparative CMC determination graphs, from FS using pyrene probe, for samples PDMAEMA₁₃-b-PLMA₃₉-b-POEGMA₈ and QPDMAEMA₁₃-b-PLMA₃₉-b-POEGMA₈ for (a) solvent-switch (THF) and (b) thin film layer solubilization protocols.

Table	S2.	R_g/R_h	ratio	from	SLD/DLS	measurements	for	samples	PDMAEN	/A ₁₃ -b-
PLMA	₃₉ -b-l	POEGN	∕IA ₈ ar	nd QP	DMAEMA	₁₃ -b-PLMA ₃₉ -b-P	OEG	MA ₈ for a	all solubi	lization
protoc	cols									

Sample	Solubilization protocol	R_g^a	R _h ^b	R _g / R _h
		125	72	1.73
PDMAEMA ₁₃ -b-	H ₂ O			
PLMA ₃₉ -b-POEGMA ₈	THF	84	30	2.8
	Thin Film	100	60	1.66
QPDMAEMA ₁₃ -b-		75	71	1.05
PLMA ₃₉ -b-POEGMA ₈	H ₂ O			
	THF	70	78	0.9
	Thin Film	153	148	1.03

^a Determined by SLS. ^b Determined by DLS.

Light scattering results on the R_g/R_h ratio (Table S2) indicate the presence of spherical micelles in the solutions of samples PDMAEMA₁₃-b-PLMA₃₉-b-POEGMA₈ and QPDMAEMA₁₃-b-PLMA₃₉-b-POEGMA₈, except maybe for the case of sample PDMAEMA₁₃-b-PLMA₃₉-b-POEGMA₈ assemblies from THF solutions, where R_g/R_h values point to the existence elongated structures may be formed, something that is not confirmed by SEM observations however. In the case of sample QPDMAEMA₁₃-b-PLMA₃₉-b-POEGMA₈ solutions the presence of vesicles cannot be excluded, although the N_{agg} values are low and do not conform to vesicular structures, which usually have a larger aggregation number.

Figure S3. R_h and scattered intensity as a function of ionic strength ([NaCl]) for QPDMAEMA₁₃-b-PLMA₃₉-b-POEGMA₈ using (a) THF and (b) thin film layer solubilization protocols.

The ionic strength dependence of size and mass of sample QPDMAEMA₁₃-b-PLMA₃₉b-POEGMA₈ self-organized structures seems to be independent of the solubilization protocol utilized. In any case a disintegration of the nanostructures is observed by increasing ionic strength of the aqueous solution, as in the case of the direct water solubilization protocol (see also discussion in the main manuscript).