dichloromethane solution.

ELECTRONIC SUPPORTING INFORMATION (ESI)

QDs decorated with thiol-monomer ligands as new multicrosslinkers for the synthesis of smart luminescent nanogels and hydrogels.

Entry	sample	λ _{abs.max} (nm)	λ _{em.max.} (nm)	Φ_{F}	$^{c}\Phi_{\text{F rel.}}$	Size (nm)
1	QD_1	560.9	570.5	0.031	1	3.3*
2	QD ₁ @AcSEMA	558.9	568.6	0.209	6.7	3.4 ± 0.9
3	QD ₂	507.9	520.8	0.015	1	2.5*
4	QD ₂ @AcSEOMA	474.8	510.0	0.032	2.1	7.2 ± 1.0

Marta Liras^b, Isabel Quijada-Garrido^a, Olga García^{a,*}

Table S1. Photophysical properties^a and nanoparticle sizes^b of the hybrid nanoparticles in

^aMaximum absorption wavelength ($\lambda_{abs.max}$), maximum emission wavelength ($\lambda_{em.max}$), emission quantum yield taking as reference DCMSP in ethanol (Φ_{F} = 0.435) for QD₁¹ or to fluorescein in basic water (Φ_{F} = 0.92) for QD₂², ^cemission quantum yield related (Φ_{F} rel.) to the parent CdSe@TOPO (QD_n) (Φ_{F} rel). ^bMeasured by dynamic light scattering (DLS) in diluted dichloromethane solutions. *Nanoparticle sizes estimated as a function of their photophysical properties as it was described by Yu *et al.*³.

Figure S1. FTIR-ATR spectra of A) $QD_1@TOPO$ or $QD_2@TOPO$. B) QD_1 after ligand exchange with AcSEMA and dialysis. C) QD_2 after ligand exchange with AcSEOMA and dialysis.

Figure S2. FTIR-ATR spectra corresponding to QD₂@TOPO in the presence of AcSEOMA before hydrolysis (grey line) and QD₂@SEOMA hybrids, after 150h of hydrolysis reaction, in the presence of sodium methoxide (pink line).

Figure S3. ¹H-NMR of $QD_2@SEOMA$ sample after 48h of hydrolysis where two species (AcSEOMA and SEOMA) linked to the nanoparticle surface coexist. The ¹H-NMR of pristine $QD_2@TOPO$ is included at the bottom to check the efficiency of the ligand exchange reaction.

Figure S4. Fluorescence spectra of hybrid QD@nanogels based on A) SEMA and B) SEOMA in dichloromethane (DCM) solutions and in water solution at pH 7.0 at two temperatures (4°C and 50°C), below and above the collapsing temperature of the nanogels. (All the emission spectra of samples were recorded under 450 nm of wavelength excitation except QD@SEOMA@pMEO₂MA nanogels in DCM which was excited at 400 nm due their blue shift emission).

Figure S5. A) Fluorescence emission spectra evolution of hybrid nanogels of QD@SEMA@pMEO₂MA in water solution at pH 7.0 recorded after heating the sample above (50°C) and below (4°C) the Tc for different and B) consecutive cycles. C) Evolution of the normalized emission fluorescence with pH and temperature.

Figure S6. Representative sTEM images at 4° C and 50° C from water solutions of A) QD@SEMA@pMEO₂MA at pH 7 and B) QD@SEOMA@pMEO₂MA nanogeles at pH 9.

Figure S7. A) Evolution of the fluorescence emission spectra of the hybrid hydrogels of QD@SEMA-pMEO₂MA-2 wt% soaked in phosphate buffer at pH 4 during different and successive cycles of cooling (4°C) and heating (50°C). *Inset*: real photograph of the same hydrogel recorded at the two temperatures is included. B) Variation of the normalized fluorescence emission as a function of the pH and temperature of the medium.

Table S2. Equilibrium swelling (Q_{∞}) of hydrogels based on MEO₂MA crosslinked with different amounts of hybrid nanoparticles of QD@SEMA or QD@SEOMA obtained in water solutions at pH 7 and 4°C.

Hydrogel	Crosslinker amount (wt%)	Q∞ (%)
	1	398
QD@SEMA- pMFQ ₂ MA	2	308
p11120211111	3	-
	1	504
QD@SEOMA- pMEO₂MA	2	737
r - 2	3	719

References

- 1. K. Rurack and M. Spieles, *Analytical Chem.*, 2011, **83**, 1232-1242.
- 2. D. Magde, R. Wong and P. G. Seybold, *Photochemistry and Photobiology*, 2002, **75**, 327-334.
- 3. W. W. Yu, L. Qu, W. Guo and X. Peng, *Chem. Mater.*, 2003, **15**, 2854-2860.