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Experimental Section 

1. Instrumentation  

The UV-vis absorbance and CD spectra of the solution were recorded simultaneously at room 

temperature using a JASCO (Tokyo, Japan) J-820 spectropolarimeter equipped with Peltier 

controlled equipment using a square quartz (SQ)-grade cuvette with path lengths of 5 mm for 

PF8T2 aggregates and 10 mm for camphor. To obtain CD/UV-vis spectra, a scanning rate of 100 

nm min-1, a bandwidth of 1 nm (solution) and 5 nm (silicone grease film) and a response time of 2 

sec were utilized.  

 CPL and PL spectra were collected on a JASCO CPL-200 spectrofluoropolarimeter using an 

SQ-grade cuvette with path lengths of 5 mm for PF8T2 aggregates and 10 mm for camphor at room 

temperature. The optimal experimental parameters for PF8T2 aggregates were simultaneously 

obtained: scanning rate: 100 nm min-1; bandwidth: 10 nm for excitation and detection; slit width for 

excitation: 10 nm and 2000 µm at 390 nm and 420 nm; PMT response time: 4 sec during 

measurements using a single accumulation. Furthermore, this instrument was designed to obtain 

the PF8T2 aggregates’ CPLE spectra corresponding to their CD and CPL signals by adjusting the 

detection wavelength and using a bandwidth of 10 nm, a scanning rate of 20, 50, or 100 min-1 and 

response time of 4 sec. 

 For camphor, the conditions used to measure the CPL, PL, CPLE and PLE spectra at room 

temperature were as follows: for CPL and PL measurements, path length of 10 mm and scanning 

rate of 20–50 nm min-1 and slit widths of 2000−3000 µm for excitation and detection; for CPLE and 

PLE measurements, excitation slit width of 2000 µm at 290 nm, detection slit width of 

2000−3000 µm and PMT response time of 4-16 sec during measurements involving 4−8 

accumulations. Additionally, this instrument was designed to obtain the CPLE spectra 

corresponding to CD signals by adjusting the detection wavelength with a bandwidth of 10 nm, a 

scanning rate of 100 or 10 nm min-1 and a response time of 4 sec. High-resolution CPLE and PLE 

spectra of camphor in cyclohexane were collected under the following conditions: a scanning rate of 

10 nm min-1, bandwidths of 10 nm for excitation and detection, a PMT time constant of 16 sec, and 

4 accumulations. High-resolution PLE spectra of camphor in cyclohexane were also obtained using 

a JASCO FP6500 fluorometer under the following conditions: a scanning rate of 50 nm min-1, a 

bandwidth of 3 nm for excitation, a bandwidth of 5 nm for detection, a PMT time constant of 1 sec, 

high PMT gain, and one accumulation. 

 The weight-averaged molecular weight (Mw), number-averaged molecular weight (Mn) and 

polydispersity index (PDI = Mw/Mn) were evaluated via GPC, which was performed on a Shimadzu 

A10 instrument with a PLgel (Varian, 10 µm mixed-B) column and high-performance liquid 

chromatography (HPLC)-grade tetrahydrofuran (THF) as the eluent at 40 °C (calibrated with 

polystyrene standards). The aggregate sizes were analysed using DLS (detector angle of 90°, 50 

accumulated scans; DLS-6000HL, Otsuka Electronics, Hirakata-Osaka, Japan) with solution 

viscosity data obtained with a Sekonic (Tokyo, Japan) viscometer (VM-100) at 25 °C and the nD 

value of chloroform:methanol (2.1:0.9) (v/v) determined at 589 nm and 25 °C using an Atago 

(Tokyo, Japan) thermo-controlled DR-M2 refractometer at 25 °C.  

 To photoimage PF8T2, the aggregate suspension in chloroform:methanol (2.1:0.9) (v/v) was 

drop-cast onto a micro slide glass with a thickness of 0.9–1.2 mm, and the image was obtained 

directly by FOM with excitation at 365 nm using a Nikon eclipse E400 optical microscope equipped 

with a Canon EOS Kiss X7i digital camera. 
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2. Chiroptical analysis   

The dissymmetry factor of circular polarization at the ground state (gabs) was theoretically 

calculated as gabs = (εL - εR)/[1/2(εL+εR)], where εL and εR are the extinction coefficients for left- and 

right-CP light, respectively. The dissymmetry factor of circular polarization at the excited state (gCPL) 

was calculated as gem = (IL - IR)/[1/2(IL + IR)], where IL and IR are the output signals for left- and 

right-circularly polarized light under the unpolarized incident light, respectively. The parameter gabs 

was experimentally determined using the expression,  

Δε/ε = [ellipticity (in mdeg)/32 980]/absorbance at the CD extremum,  

similar to the parameter gem, which was calculated as  

ΔI/I = [ellipticity (in mdeg)/(32 980/ln10)]/[unpolarized total PL intensity (in volts)] at the CPL 

extremum.  

The refractive index (nD) value of the cosolvent was determined as nD,ave = x nD(CHCl3) + (1-x) 

nD(MeOH), where x is the volume fraction of CHCl3 in the mixture of the two solvents. The nD values of 

pure CHCl3 and MeOH were selected in this research. 

 

3. Computational simulations   
The most stable structure of D-camphor, which has a C(7)–C(4)=O(26) bond angle of 153°, as 

shown below, was optimized using PM6 with Gaussian09 rev. D.01 (Gaussian, Inc., Wallingford CT, 

2013).S1 All hydrogen atoms are omitted for clarity. A series of other unstable structures was 

obtained as a function of the C(7)–C(4)=O(26) bond angle based on the global minimum structure 

with a planar ketone C(1)–C(4)=O(26)–C(4) 

geometry. These hypothetical models with the 

C(7)–C(4)=O(26) bond angle of D-camphor were 

further optimized using a DFT programme and the 

aug-cc-pVDZ basis set as a function of the C(7)–

C(4)=O(26) bond angle. Subsequently, TD-DFT 

calculations with B3LYP and the aug-cc-pVDZ 

basis set were performed to obtain the UV-is and 

CD spectra (6 singlet transitions) with a FWHM of 

0.1 eV. These simulated UV-vis and CD spectra 

were saved as text data sets and re-plotted using 

KaleidaGraph ver. 4.5 (Synergy Software, 

Reading, PA 19606, USA). Two MacPro computers (2.80 GHz and 2.66 GHz clock, 8-core and 32 

GB memory) were used to perform these calculations. 

 

Ref. S1. Gaussian 09, Rev. D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. 
Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. 
Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. 
Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. 
Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. 
Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. 
Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, 
V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. 
Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. 
Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. 
Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013. 
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4. Materials 

4.1. Preparation of stock solutions and dried aggregates 

 The stock solutions of PSi-R and PSi-S (details are given in the experimental section of ref 9a) 

were diluted in a good solvent (chloroform) and then stirred for 1 hour and kept at room temperature 

overnight. A similar process was used for poly[(9,9-di-octyl-fluorenyl-2,7-diyl)-alt-bithiophene] 

(PF8T2). In this research, PF8T2 with an Mn of 10,300 and PDI of 2.64 (Sigma-Aldrich Japan, 

Tokyo, Japan) as received was utilized. 

 The stock solution of (1S)-(-)-camphor (L-camphor, Aldrich) and (1R)-(-)-camphor (D-camphor, 

Aldrich) were diluted in cyclohexane (1.0 x 10–2 M, Dojindo, Kumamoto, Japan) at room 

temperature. For confirmation, spectroscopic-grade ethanol (Wako, Osaka, Japan) was used as a 

solvent to dilute L-/-D-camphor at a concentration of 0.4 % wt/v (2.6 x 10–2 M). 

The dried aggregates were prepared by removing the CHCl3-MeOH cosolvent in a stream of dry 

nitrogen gas flow at room temperature. The aggregates were dispersed in a silicone grease 

(Dow-Corning-Toray). The aggregates-containing grease was coated onto a quartz substrate (22 

mm in diameter). 

 

4.2. Hetero-aggregation of PSi and PF8T2  

 Spectroscopic-grade chloroform (Dojindo) as a good solvent and spectroscopic-grade methanol 

(Dojindo) and spectroscopic-grade ethanol (Wako) as poor solvents were added to produce an 

optically active hetero-aggregate in the SQ-grade cuvette (path length: 10 mm). A preliminary 

experiment revealed that the optimized volume ratios were 2.1:0.9 and 2.2:0.8 corresponding to 

each PSi-R/-S helicity transfer; the total volume of chloroform:methanol was fixed at 3.0 mL. The 

molar ratio of the polymers dissolved in the chloroform was tuned according to the experimental 

requirements. PF8T2 dissolved in chloroform was added to the cuvette, followed by dissolved 

PSi-R (Mn = 23,900, PDI = 1.64) or PSi-S (Mn = 20,400, PDI = 1.32) to produce a well-mixed 

complex; then, methanol was normally added. Subsequently, CD-UV-vis, CPL-PL and CPLE 

spectroscopic data were collected within several minutes after the completion of the 

hetero-aggregation process. Quantum yields (ΦPL) of PF8T2 in homogeneous CHCl3 solution and 

PF8T2 homo-aggregate, PF8T2 hetero-aggregates with PSi-S/PSi-R in CHCl3-MeOH cosolvent 

(2.2:0.8 (v/v)) were evaluated using a 5,5’-diphenyl-3-dimesitylboryl-2,2’-bithiophene (BT3) (ΦPL = 

90 % in THF)S2 as a secondary referenceS3 for a green emitter. 

 

Ref. S2. A. Wakamiya, K. Mori and S. Yamaguchi, Angew. Chem., Int. Ed., 2007, 23, 4273–4276.  

Ref. S3. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Springer, Heidelberg, 3rd edn, 

2006. 
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Data Sets 

 

  
Fig. S1. GPC charts monitored at (a) 325 nm of PSi-S/-R and (b) 370 nm of PF8T2. 

 
Fig. S2. CD/UV-vis spectra of PF8T2 and PSi-S/-R in CHCl3. 

 

  

  
 

Fig. S3. (a) The gabs value of PF8T2 hetero-aggregate with PSi-S/-R (1/1) at ≈ 500 nm as a function of the 
refractive index (nD) in 3.0 mL of MeOH-CHCl3 cosolvent and (b) magnified plots. (c) The gabs value of PF8T2 
hetero-aggregate with PSi-S/-R (1/1) at ≈ 500 nm as a function of the refractive index (nD) in 3.0 mL of 
EtOH-CHCl3 cosolvent and (d) magnified plots. 
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Fig. S4. (a) Raw CD/UV-vis and (b) CPL/PL spectra of PF8T2 hetero-aggregate with PSi-S/-R (1/1) produced in 
CHCl3:MeOH = 2.2:0.8 (v/v). 

 

Fig. S5. CD/UV-vis spectra of PF8T2 hetero-aggregate with PSi-S/-R (1/1) produced in CHCl3:EtOH = 2.1:0.9 
(v/v). 
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Fig. S6. Normalized PL spectra excited at 420 nm and PLE spectra monitored at 430 nm and 570 nm of PF8T2 
hetero-aggregate with (a) PSi-R and (b) PSi-S (1/1). PLE spectra of PF8T2 hetero-aggregate with PSi-R (1/1) 
monitored at (c) 550 nm, 560 nm, 570 nm and 580 nm; and (e) 420 nm, 430 nm and 440 nm. PLE spectra of 
PF8T2 hetero-aggregate with PSi-S (1/1) produced in CHCl3:MeOH = 2.2:0.8 (v/v) monitored at (d) 560 nm, 570 
nm, and 580 nm; and (f) 420 nm, 430 nm and 440 nm. The final concentration was 10–5 M. The spectra were 
obtained with a JASCO FP6500 spectrofluorimeter.  
 These data sets were obtained using an achiral spectrofluorimeter (JASCO FP6500). The measurement 
conditions were as follows. In the PLE experiments monitored at 550 nm, 560 nm, 570 nm and 580 nm: 
bandwidth for excitation: 1 nm; bandwidth for detection: 3 nm: PMT: high sensitivity; PMT response time: 1 sec; 
data interval: 1 nm: and one scan collected at a rate of 100 nm min–1. In the PLE experiments monitored at 420 
nm, 430 nm, and 440 nm: bandwidth for excitation: 3 nm; bandwidth for detection: 5 nm: PMT: high sensitivity; 
PMT response time: 1 sec; data interval: 1 nm; and one scan collected at a rate of 100 nm min–1. 

  

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

300 400 500 600 700

PLE_M430 nm

PLE_M570 nm
PL_Ex420 nm

N
or

m
al

iz
ed

 P
LE

 In
te

ns
ity

N
or

m
al

iz
ed

 P
L 

In
te

ns
ity

Wavelength /nm
250

1.0x10-5 M

(a)

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

300 400 500 600 700

PLE_M430 nm

PLE_M570 nm
PL_Ex420 nm

N
or

m
al

iz
ed

 P
LE

 In
te

ns
ity

N
or

m
al

iz
ed

 P
L 

In
te

ns
ity

Wavelength /nm
250

1.0x10-5 M

(b)

0

100

200

300

400

300 400 500 600 700

PF8T2_PSiR_2.2CHCl3_0.8MeOH

PLE_M550 nm
PLE_M560 nm
PLE_M570 nm
PLE_M580 nm

P
LE

 In
te

ns
ity

 

Wavelength /nm
250

1.0x10-5 M

(c)

0

100

200

300

300 400 500 600 700

PF8T2_PSiS_2.2CHCl3_0.8MeOH

PLE_M560 nm

PLE_M570 nm

PLE_M580 nm

P
LE

 In
te

ns
ity

 

Wavelength /nm
250

1.0x10-5 M

(d)

0

100

200

300

300 400 500 600 700

PF8T2_PSiR_2.2CHCl3_0.8MeOH

PLE_M420 nm

PLE_M430 nm

PLE_M440 nm

P
LE

 In
te

ns
ity

 

Wavelength /nm

1.0x10-5 M

250

(e)

0

100

200

300

300 400 500 600 700

PLE_M420 nm

PLE_M430 nm

PLE_M440 nm

P
LE

 In
te

ns
ity

 

Wavelength /nm
250

1.0x10-5 M

(f)



 S9	
  

  
a. PL spectra of 5,5’-diphenyl-3-dimesitylboryl-2,2’- 
bithiophene (BT3) in THF (2.0x10-5 M).  

b. PL spectra of PF8T2 in CHCl3 (4.0x10-6 M). Abs = 0.193 
at 420 nm. Abs = 0.196 at 420 nm. ΦPL = (0.9) × 
(0.196/0.193) × (6737.95/8612.82) × (1.4441^2/1.4072^2). 

  
c. PL spectra of PF8T2 homo-aggregate (8.0x10-6 M) 
in CHCl3-MeOH (2.2/0.8 (v/v)). Abs = 0.210 at 420 nm. 
ΦPL = (0.9) × (0.196/0.210) × (3089.08/8612.82) × 
(1.414^2/1.407^2) 

d. PL spectra of PF8T2 hetero-aggregate (4.0x10-6 M) with 
PSi-S in CHCl3-MeOH (2.2/0.8 (v/v)). Abs = 0.195 at 420 
nm. ΦPL = (0.9) × (0.196/0.195) × (3158.88/8612.82) × 
(1.414^2/1.407^2) 

 

 

e. PL spectra of PF8T2 hetero-aggregate (4.0x10-6 M) 
with PSi-R in CHCl3-MeOH (2.2/0.8 (v/v)). Abs = 0.185 
at 420 nm. ΦPL = (0.9) × (0.196/0.185) × 
(2961.20/8612.82) × (1.414^2/1.407^2) 

 

 
Compd Solvent(s) Quantum yield (ΦPL) 

BT3 THF 0.90 

PF8T2 CHCl3 0.75 

PF8T2 homo-aggregate CHCl3-MeOH (2.2/0.8 (v/v)) 0.30 

PF8T2-PSi-S (1:1) hetero-aggregate CHCl3-MeOH (2.2/0.8 (v/v)) 0.34 

PF8T2-PSi-R (1:1) hetero-aggregate CHCl3-MeOH (2.2/0.8 (v/v)) 0.33 

 
Fig. S7. Quantum yields and their raw PL spectral data of BT3 in CHCl3, PF8T2 in CHCl3, PF8T2 homo-aggregate in 
CHCl3-MeOH (2.2/0.8 (v/v)), PF8T2 hetero-aggregate with PSi-S in CHCl3-MeOH (2.2/0.8 (v/v)) and PF8T2 
hetero-aggregate with PSi-R in CHCl3-MeOH (2.2/0.8 (v/v)).   
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Fig. S8. CD/UV-vis spectra of PF8T2 hetero-aggregate with (a) PSi-S and (b) PSi-R (1/1) produced in 
CHCl3:MeOH = 2.1:0.9 (v/v) followed by UV-light irradiation. (c) CPL/PL spectra (excited at 420 nm) of PF8T2 
hetero-aggregate with PSi-S/-R before and after 600 sec of UV-light irradiation at 313 nm. 
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Fig. S9. Hetero-aggregate gabs values of PF8T2 (1.0 x 10-5 M) and PSi-S/-R (1.0 x 10-5 M) prepared in 
CHCl3:MeOH = 2.1:0.9 (v/v) as a function of the duration of UV-light irradiation at 313 nm. 

 

  
Fig. S10. DLS data of hetero-aggregates of (a) PSi-R-induced PF8T2 (1/1) and (b) PSi-S induced PF8T2 (1/1) 
before and after UV-light irradiation at 313 nm for 600 sec (14 µW cm-2). The hetero-aggregates were prepared 
in CHCl3:MeOH = 2.1:0.9 (v/v). 
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Fig. S11. FOM images of hetero-aggregates of PSi-R-induced PF8T2 (1/1) (a) before and (b) after UV-light irradiation at 
313 nm for 600 sec (14 µW cm-2). The hetero-aggregates were prepared in CHCl3:MeOH = 2.1:0.9 (v/v). 

 

Fig. S12. The dynamic force mode (DFM) images (tapping mode AFM) of hetero-aggregates of PSi-R-induced PF8T2 
(1/1) prepared in CHCl3:MeOH = 2.1:0.9 (v/v). The DFM images with Al-coated cantilever were captured using a SPA 
400 SPM unit with a SII SPI 3800 probe station (Hitachi High-Tech Science Corporation (Tokyo, Japan)). The sample 
was deposited onto a HOPG substrate (IBS-MikroMasch, Sofia, Burgaria; the Japanese vendor is Tomoe Engineering 
Co. (Tokyo, Japan)) by dropping the PF8T2-PSi-R aggregate. 
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Fig. S13. A revisited Jablonski diagram explaining the bisignate CD, CPL and CPLE spectra of PF8T2 
aggregates. 
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Fig. S14. (a) CD/UV-vis and (b) CPL/PL spectra (excited at 290 nm) of D-/-L-camphor. CPLE/PLE spectra 
monitored at 370 nm and 460 nm of (c) D-camphor and (d) L-camphor. Solvent: ethanol (Wako, spectroscopic 
grade); path length: 1 cm; 0.4 % wt/v (= 2.6 x 10-2 M). 
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Fig. S15. PLE spectra monitored at 370 nm, 500 nm and 520 nm of (a, b) D-camphor and (c, d) L-camphor. 
Concentration: 1x10−2 M in cyclohexane (cHex) (Dojindo, spectroscopic grade); path length: 1 cm; detection and 
excitation bandwidths: 5 and 3 nm, respectively; PMT sensitivity: high; PMT response time: 1 sec; 50 nm min–1; 0.5 nm 
interval; one scan conducted with a JASCO FP6500 spectrometer at room temperature.  
 Green zones in spectra (a) and (c) are magnified in spectra (b) and (d). At least three well-resolved weak vibronic 
bands (grey bars) are present, regardless of the detection wavelength (i.e., 500 nm or 520 nm). Thus, a broad 
structureless PL band at approximately 450-600 nm should be associated with these weak vibronic bands. 
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Fig. S16. CPLE/PLE spectra monitored at 370 nm and 500 nm of (a, b) D-camphor and (c, d) L-camphor. 
Solvent: Cyclohexane (Dojindo, spectroscopic grade; path length: 1 cm; concentration: 1x10-2 M; detection and 
excitation bandwidths: 10 nm; PMT response time: 16 sec; 10 nm min-1; 0.5 nm interval; 4 scans. Bold solid 
lines of CPLE spectra are numerically smoothed by 19 points of raw data. 
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Fig. S17. CD/UV-vis spectra of D-/-L-camphor in (a) ethanol (0.4 % wt/v) and (b) cyclohexane (Dojindo, 
spectroscopic grade, 1.0 x 10–2 M). Bandwidth: 1 nm; data sampling interval: 0.2 nm; path length: 1 cm. The 
shape and resolution of CD and UV spectra depend strongly on the nature of the solvent. However, cut-off 
wavelengths for cyclohexane and ethanol exist at approximately 210-220 nm. 

 

 
 
Fig. S18. CD and UV-vis data of D-camphor at the 1st Cotton band as a function of the C(7)-C(4)=O(26) angle (DFT and 
TD-DFT with B3LYP and the aug-ccpvDZ basis set). 
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Angle C-C=O, 140° Angle C-C=O, 145° Angle C-C=O, 153° 

   

 
Angle C-C=O, 161° Angle C-C=O, 165° Angle C-C=O, 168° 

   

 
Angle C-C=O, 170° Angle C-C=O, 172° Angle C-C=O, 174° 

   

 
Angle C-C=O, 180° Angle C-C=O, 185° Angle C-C=O, 190° 

   

 
Angle C-C=O, 195° Angle C-C=O, 200° Angle C-C=O, 202° 
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Angle C-C=O, 204° Angle C-C=O, 208° Angle C-C=O, 212° 

   

 
Angle C-C=O, 218° Angle C-C=O, 230°  

  

 

 
Fig. S19. Simulated CD/UV-vis spectra of D-camphor as the C(7)-C(4)=O(26) bond angle from a planar to a bent 
structure (TD-DFT with B3LYP and the aug-ccpvDZ basis set; full-width at half-maximum: 0.1 eV). 
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