Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is © The Royal Society of Chemistry 2017

## Supporting information for:

## Increasing the solubility range of polyesters by tuning their microstructure with comonomers

Marie A. F. Delgove,<sup>a</sup> Juandré Luchies,<sup>a</sup> Iris Wauters,<sup>b</sup> Geert G.P. Deroover,<sup>b</sup> Stefaan M.A. De Wildeman<sup>a</sup> and Katrien V. Bernaerts<sup>a</sup>

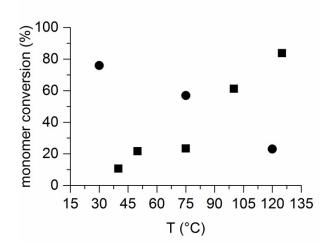
<sup>a</sup>Department of Biobased Materials, Maastricht University, P.O. Box 616, 6200MD Maastricht, the Netherlands

<sup>b</sup>ChemStream, Drie Eikenstraat 661, B-2650 Edegem, Belgium

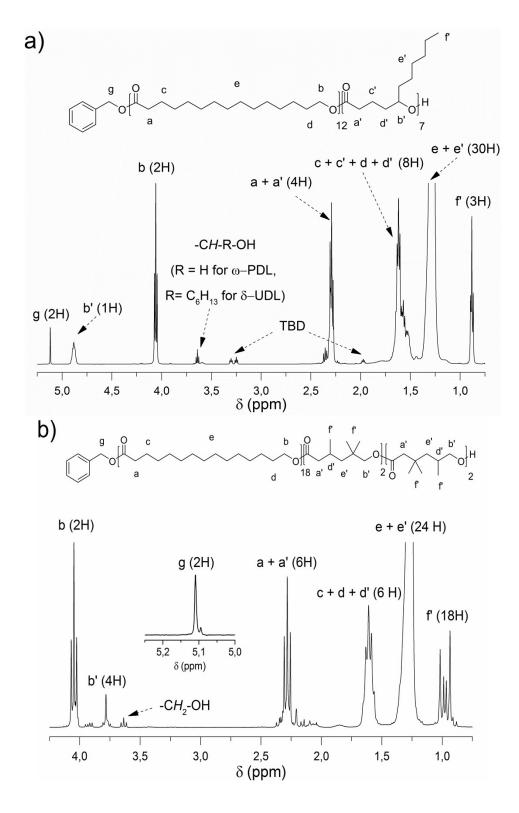
## Theoretical diad distribution calculation from semi-quantitative <sup>13</sup>C NMR.

The probability to have a  $\omega$ -PDL unit depends on the theoretical degree of polymerization and is corrected with the conversion:

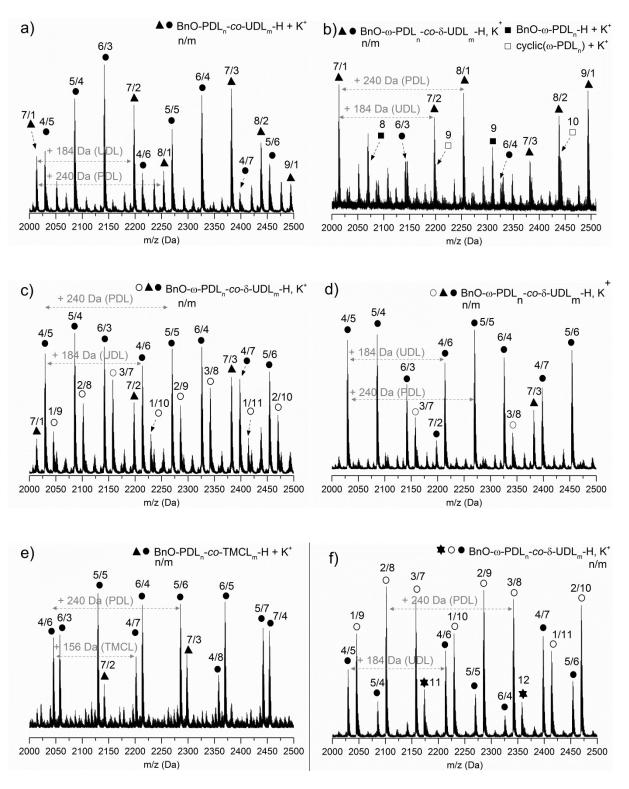
$$P_{\omega-PDL} = \frac{DP_{n,th,\,\omega-PDL}.\,conv(\omega-PDL)}{DP_{n,th,\,\omega-PDL}.\,conv(\omega-PDL) + DP_{n,th,\,M}.\,conv(M)}$$


$$P_{M} = \frac{DP_{n,th, M}. conv(M)}{DP_{n,th, \omega - PDL}. conv(\omega - PDL) + DP_{n,th, M}. conv(M)}$$

The theoretical diad distributions correspond to the product of the probabilities:

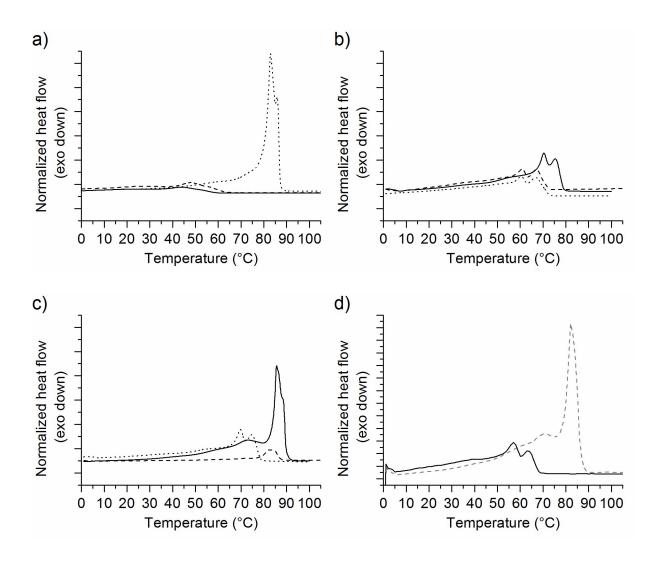

$$\omega - PDL^* - \omega - PDL = P_{\omega - PDL}^2$$

$$M^* - M = P_M^2$$


$$\omega - PDL^* - M = M^* - \omega - PDL = P_{\omega - PDL}.P_M$$



**Figure S1.** Temperature dependence of bulk homopolymerizations (BnOH/ $\omega$ -PDL 1/20 and BnOH/ $\delta$ -UDL 1/15) with  $\omega$ -PDL (black square) and  $\delta$ -UDL (black circle) conversions after 60 min.




**Figure S2.** <sup>1</sup>H NMR (CDCl<sub>3</sub>, 300 MHz) spectrum of purified copolymers a) poly(ω-PDL-*co*-δ-UDL) (Table 1, entry **3**); and b) poly(ω-PDL-*co*-TMCL) (Table 1, entry **6**).



**Figure S3**. MALDI-ToF spectra of a) poly( $\omega$ -PDL-co-δ-UDL) synthesized with a feed ratio of 12/4  $\omega$ -PDL/ δ-UDL in one-pot; b) poly( $\omega$ -PDL-co-δ-UDL) synthesized with a feed ratio of 12/4  $\omega$ -PDL/ δ-UDL with  $\omega$ -PDL added to δ-UDL; c) poly( $\omega$ -PDL-co-δ-UDL) synthesized with a

feed ratio of 12/4  $\omega$ -PDL/  $\delta$ -UDL with  $\delta$ -UDL added to  $\omega$ -PDL; d) poly( $\omega$ -PDL-co- $\delta$ -UDL) synthesized with a feed ratio of 8/8  $\omega$ -PDL/  $\delta$ -UDL in one-pot; e) poly( $\omega$ -PDL-co- $\delta$ -UDL) with  $\omega$ -PDL/TMCL feed ratio of 8/8 in one-pot, and f) poly( $\omega$ -PDL-co- $\delta$ -UDL) synthesized with a feed ratio of 4/12  $\omega$ -PDL/  $\delta$ -UDL in one-pot. Squares indicate PPDL homopolymers (black for linear and empty for cyclics) and black stars indicate PUDL homopolymers. Black triangles indicate copolymers with  $\omega$ -PDL ratio < 0.7, empty circles indicate copolymers with  $\omega$ -PDL ratio < 0.3 and black circles indicate copolymers with 0.3 <  $\omega$ -PDL ratio < 0.7.



**Figure S4.** DSC thermographs (2<sup>nd</sup> heating) of poly( $\omega$ -PDL-co-δ-UDL) synthesized in one-pot (black full line), with  $\omega$ -PDL addition to δ-UDL (black dashed line) and with δ-UDL addition to  $\omega$ -PDL (black dotted line) with feeding ratios of  $\omega$ -PDL/ δ-UDL of a) 4/12, b) 8/8, and c) 12/4. d) DSC thermographs of poly( $\omega$ -PDL-co-TMCL) synthesized in one-pot with feeding ratios of  $\omega$ -PDL/TMCL of 8/8 (full line) and 12/4 (dashed line).